FINITE VOLUME DISCRETIZATIONS FOR EIGENVALUE PROBLEMS WITH APPLICATIONS TO ELECTRONIC STRUCTURE CALCULATIONS

被引:18
|
作者
Dai, Xiaoying [1 ]
Gong, Xingao [2 ]
Yang, Zhang [1 ]
Zhang, Dier [2 ]
Zhou, Aihui [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Sci & Engn Comp, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
基金
国家高技术研究发展计划(863计划); 美国国家科学基金会;
关键词
eigenvalue; electronic structure; finite element; finite volume; high order; symmetric; DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; GROUND-STATE SOLUTION; ELEMENT-METHOD; DIMENSIONAL APPROXIMATIONS; SCHRODINGER-OPERATORS; ALGORITHMS; COMPUTATIONS; CONVERGENCE; EQUATIONS;
D O I
10.1137/090757046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To introduce the finite volume method to electronic structure calculations, we study a symmetric finite volume scheme for a class of linear eigenvalue problems and present a priori error analysis of the finite volume eigenpair approximations. Based on finite volume-finite element coupled discretizations, in particular, we design several higher order approximate schemes. We also demonstrate a series of numerical experiments in electronic structure calculations that illustrate the effectiveness of our finite volume discretization approaches.
引用
收藏
页码:208 / 240
页数:33
相关论文
共 50 条
  • [1] LOCAL AND PARALLEL FINITE ELEMENT DISCRETIZATIONS FOR EIGENVALUE PROBLEMS
    Bi, Hai
    Yang, Yidu
    Li, Hao
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) : A2575 - A2597
  • [2] Finite volume methods for eigenvalue problems
    Liang, SD
    Ma, XL
    Zhou, AH
    BIT, 2001, 41 (02): : 345 - 363
  • [3] Finite Volume Methods for Eigenvalue Problems
    Shengde Liang
    Xiuling Ma
    Aihui Zhou
    BIT Numerical Mathematics, 2001, 41 : 345 - 363
  • [4] Two-scale finite element discretizations for nonlinear eigenvalue problems in quantum physics
    Hou, Pengyu
    Liu, Fang
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (04)
  • [5] The adaptive finite element method based on multi-scale discretizations for eigenvalue problems
    Li, Hao
    Yang, Yidu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (07) : 1086 - 1102
  • [6] A Finite Element Recovery Approach to Eigenvalue Approximations with Applications to Electronic Structure Calculations
    Fang, Jun
    Gao, Xingyu
    Zhou, Aihui
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (02) : 432 - 454
  • [7] Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
    Xiaoying Dai
    Zhang Yang
    Aihui Zhou
    Science in China Series A: Mathematics, 2008, 51 : 1401 - 1414
  • [8] Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions
    Dai Xiaoying
    Yang Zhang
    Zhou Aihui
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1401 - 1414
  • [10] Symmetric finite volume discretizations for parabolic problems
    Ma, XL
    Shu, S
    Zhou, AH
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2003, 192 (39-40) : 4467 - 4485