Locally One-Dimensional Difference Scheme for a Fractional Tracer Transport Equation

被引:3
作者
Ashabokov, B. A. [1 ]
Beshtokova, Z. V. [2 ]
Shkhanukov-Lafishev, M. Kh [2 ]
机构
[1] Russian Acad Sci, Inst Comp Sci & Problems Reg Management, Kabardino Balkar Sci Ctr, Nalchik 360051, Russia
[2] Inst Appl Math & Automat, Nalchik 360000, Russia
关键词
differential equation; fractional derivative; stability and convergence of difference schemes; locally one-dimensional scheme; DIFFUSION EQUATION; ORDER;
D O I
10.1134/S0965542517090044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A locally one-dimensional scheme for a fractional tracer transport equation of order is considered. An a priori estimate is obtained for the solution of the scheme, and its convergence is proved in the uniform metric.
引用
收藏
页码:1498 / 1510
页数:13
相关论文
共 20 条
[1]   Boundary value problems for the diffusion equation of the variable order in differential and difference settings [J].
Alikhanov, Anatoly A. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) :3938-3946
[2]  
[Anonymous], 1990, Differ. Uravn
[3]  
[Anonymous], 1977, Theory of Difference Schemes
[4]  
Ashabokov V. A., 2008, CONVECTIVE CLOUDS NU
[5]   Locally one-dimensional schemes for the diffusion equation with a fractional time derivative in an arbitrary domain [J].
Bazzaev, A. K. ;
Shkhanukov-Lafishev, M. Kh. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2016, 56 (01) :106-115
[6]  
Dinariev O. Yu., FLUID DYN, V25, P704
[7]  
Feder J., 1988, Fractals
[8]  
Goloviznin V. M., 2002, IBRAE200201 RUSS AC
[9]  
Goloviznin V. M., 2003, IBRAE200312 RUSS AC
[10]   A PETROV-GALERKIN FINITE ELEMENT METHOD FOR FRACTIONAL CONVECTION-DIFFUSION EQUATIONS [J].
Jin, Bangti ;
Lazarov, Raytcho ;
Zhou, Zhi .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :481-503