Isochronal synchronization of time delay and delay-coupled chaotic systems

被引:16
|
作者
Grzybowski, J. M. V. [1 ]
Macau, E. E. N. [2 ]
Yoneyama, T. [1 ]
机构
[1] ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] INPE, BR-12227010 Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
COMPLEX NETWORKS; STABILITY; CRITERIA; BEHAVIOR;
D O I
10.1088/1751-8113/44/17/175103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the problem of isochronal synchronization of time-delay chaotic systems featuring also coupling delay. Based on the Lyapunov-Krasovskii stability theory, sufficient conditions are derived for the stability of isochronal synchronization between a pair of identical chaotic systems. Such criteria permit the proper design of stable proportional linear feedback controller, more specifically, the design of adequate proportional feedback gain matrices. The proposed criteria are suited to systems with (i) intrinsic delay, (ii) coupling delay or (iii) both. Numerical simulations of the synchronization of delay-coupled systems are presented as examples of the application of the criteria.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Zero-lag synchronization and bubbling in delay-coupled lasers
    Tiana-Alsina, J.
    Hicke, K.
    Porte, X.
    Soriano, M. C.
    Torrent, M. C.
    Garcia-Ojalvo, J.
    Fischer, I.
    PHYSICAL REVIEW E, 2012, 85 (02)
  • [42] Multi-stable Synchronization of Delay-coupled Optomechanical Oscillators
    Shah, Shreyas Y.
    Zhang, Mian
    Lipson, Michal
    2015 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2015,
  • [43] Stability, bifurcation, and synchronization of delay-coupled ring neural networks
    Mao, Xiaochen
    Wang, Zaihua
    NONLINEAR DYNAMICS, 2016, 84 (02) : 1063 - 1078
  • [44] Heterogeneity-induced synchronization in delay-coupled electronic oscillators
    Punetha, Nirmal
    Wetzel, Lucas
    PHYSICAL REVIEW E, 2022, 106 (05)
  • [45] Complex transitions to synchronization in delay-coupled networks of logistic maps
    Masoller, C.
    Atay, F. M.
    EUROPEAN PHYSICAL JOURNAL D, 2011, 62 (01): : 119 - 126
  • [46] Synchronization properties of two mutually delay-coupled semiconductor lasers
    Junges, Leandro
    Gavrielides, Athanasios
    Gallas, Jason A. C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (07) : C65 - C71
  • [47] Understanding the enhanced synchronization of delay-coupled networks with fluctuating topology
    D'Huys, Otti
    Rodriguez-Laguna, Javier
    Jimenez, Manuel
    Korutcheva, Elka
    Kinzel, Wolfgang
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (10-11): : 1129 - 1150
  • [48] Stability, bifurcation, and synchronization of delay-coupled ring neural networks
    Xiaochen Mao
    Zaihua Wang
    Nonlinear Dynamics, 2016, 84 : 1063 - 1078
  • [49] Complex partial synchronization patterns in networks of delay-coupled neurons
    Nikitin, D.
    Omelchenko, I.
    Zakharova, A.
    Avetyan, M.
    Fradkov, A. L.
    Schoell, E.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2153):
  • [50] Reliability and synchronization in a delay-coupled neuronal network with synaptic plasticity
    Perez, Toni
    Uchida, Atsushi
    PHYSICAL REVIEW E, 2011, 83 (06):