Isochronal synchronization of time delay and delay-coupled chaotic systems

被引:16
|
作者
Grzybowski, J. M. V. [1 ]
Macau, E. E. N. [2 ]
Yoneyama, T. [1 ]
机构
[1] ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] INPE, BR-12227010 Sao Jose Dos Campos, Brazil
基金
巴西圣保罗研究基金会;
关键词
COMPLEX NETWORKS; STABILITY; CRITERIA; BEHAVIOR;
D O I
10.1088/1751-8113/44/17/175103
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies the problem of isochronal synchronization of time-delay chaotic systems featuring also coupling delay. Based on the Lyapunov-Krasovskii stability theory, sufficient conditions are derived for the stability of isochronal synchronization between a pair of identical chaotic systems. Such criteria permit the proper design of stable proportional linear feedback controller, more specifically, the design of adequate proportional feedback gain matrices. The proposed criteria are suited to systems with (i) intrinsic delay, (ii) coupling delay or (iii) both. Numerical simulations of the synchronization of delay-coupled systems are presented as examples of the application of the criteria.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Inphase and Antiphase Synchronization in a Delay-Coupled System With Applications to a Delay-Coupled FitzHugh-Nagumo System
    Song, Yongli
    Xu, Jian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (10) : 1659 - 1670
  • [2] Characterization and Computation of Partial Synchronization Manifolds for Diffusive Delay-Coupled Systems
    Steur, E.
    Unal, H. U.
    van Leeuwen, C.
    Michiels, W.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2016, 15 (04): : 1874 - 1915
  • [3] Bifurcations and Synchronization of Delay-Coupled Neuronal Networks with Autaptic Connections
    Mao, Xiaochen
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (06):
  • [4] Synchronization in ensembles of delay-coupled nonidentical neuronlike oscillators
    Kulminskiy, D. D.
    Ponomarenko, V. I.
    Prokhorov, M. D.
    Hramov, A. E.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 735 - 748
  • [5] Impulsive synchronization of chaotic systems subject to time delay
    Liu, Xinzhi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1320 - E1327
  • [6] Impulsive Control for the Synchronization of Chaotic Systems with Time Delay
    Han, Ming
    Liu, Yang
    Lu, Jianquan
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [7] Amplitude death in networks of delay-coupled delay oscillators
    Hoefener, Johannes M.
    Sethia, Gautam C.
    Gross, Thilo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1999):
  • [8] Synchronization patterns in a network of diffusively delay-coupled memristive Chialvo neuron map
    Wang, Zhen
    Parastesh, Fatemeh
    Natiq, Hayder
    Li, Jianhui
    Xi, Xiaojian
    Mehrabbeik, Mahtab
    PHYSICS LETTERS A, 2024, 514
  • [9] Understanding the enhanced synchronization of delay-coupled networks with fluctuating topology
    D'Huys, Otti
    Rodriguez-Laguna, Javier
    Jimenez, Manuel
    Korutcheva, Elka
    Kinzel, Wolfgang
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2018, 227 (10-11) : 1129 - 1150
  • [10] Amplitude death phenomena in delay-coupled Hamiltonian systems
    Saxena, Garima
    Prasad, Awadhesh
    Ramaswamy, Ram
    PHYSICAL REVIEW E, 2013, 87 (05)