Time-varying linearization and the Perron effects

被引:188
作者
Leonov, G. A. [1 ]
Kuznetsov, N. V. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2007年 / 17卷 / 04期
关键词
stability; instability; first approximation; time-varying linearization; Lyapunov exponent; characteristic exponent;
D O I
10.1142/S0218127407017732
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present survey, the contemporary state of the art of the problem of the justification of nonstationary linearizations is presented.
引用
收藏
页码:1079 / 1107
页数:29
相关论文
共 69 条
[21]  
DAVIES T, 1966, NONLINEAR DIFFERENTI
[22]  
DEMIDOVICH VB, 1967, LECT MATH THEORY ST
[23]  
Filippov A.F., 1988, MATH ITS APPL SOVIET, V18
[24]  
GAYSCHUN IV, 2001, SYSTEMS DISCRETE TIM
[25]   STABILITY AND LYAPUNOV STABILITY OF DYNAMIC-SYSTEMS - A DIFFERENTIAL APPROACH AND A NUMERICAL-METHOD [J].
GOLDHIRSCH, I ;
SULEM, PL ;
ORSZAG, SA .
PHYSICA D, 1987, 27 (03) :311-337
[26]  
Halanay A., 1966, DIFFERENTIAL EQUATIO
[27]  
Hartman P., 1984, ORDINARY DIFFERENTIA
[28]   THE BIRTH OF STRANGE NONCHAOTIC ATTRACTORS [J].
HEAGY, JF ;
HAMMEL, SM .
PHYSICA D, 1994, 70 (1-2) :140-153
[29]  
Katok A., 1995, INTRO MODERN THEORY, DOI 10.1017/CBO9780511809187
[30]  
Kuznetsov N.V., 2001, IZV RAEN DIFF URAVN, V5, P71