The Euler characteristic and Euler defect for comodules over Euler coalgebras

被引:7
作者
Simson, Daniel [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
coalgebra; comodule; injective resolution; Euler characteristic; integral bilinear form; Grothendieck group; Betti number; INTERVALLY FINITE POSETS; TAME-WILD DICHOTOMY; SPLIT-SEQUENCES; CATEGORIES;
D O I
10.1017/is009010019jkt081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field. We study a class of left C-comodules over a basic left Euler coalgebra C by means of the Euler Z-bilinear form (b) over cap (C) associated to C, the Euler characteristic chi(C)(M, N) of left C-comodules M, N, and the defect partial derivative(C) (M, N) is an element of Z associated to any computable Euler pair (M, N) of left C-comodules. We show that (b) over cap (C)(lgthM, lgthN) = chi(C)(M, N) + partial derivative(C)(M, N), for any computable Euler pair (M, N) of comodules over a left Euler coalgebra C. One of the main results of the paper asserts that the defect partial derivative(C)(M, N) is zero and (b) over cap (C)(lgthM, lgthN) = chi(C)(M, N), if the comodules M, N are finite-dimensional.
引用
收藏
页码:91 / 113
页数:23
相关论文
共 16 条
[11]  
Simson D., 2001, C MATH, V90, P101, DOI DOI 10.4064/cm90-1-9
[12]   Tame-wild dichotomy for coalgebras [J].
Simson, Daniel .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :783-797
[13]   Representation-directed incidence coalgebras of intervally finite posets and the tame-wild dichotomy [J].
Simson, Daniel .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (07) :2764-2784
[14]   Hom-computable coalgebras, a composition factors matrix and the Euler bilinear form of an Euler coalgebra [J].
Simson, Daniel .
JOURNAL OF ALGEBRA, 2007, 315 (01) :42-75
[15]   Localising embeddings of comodule categories with applications to tame and Euler coalgebras [J].
Simson, Daniel .
JOURNAL OF ALGEBRA, 2007, 312 (01) :455-494
[16]   INCIDENCE COALGEBRAS OF INTERVALLY FINITE POSETS, THEIR INTEGRAL QUADRATIC FORMS AND COMODULE CATEGORIES [J].
Simson, Daniel .
COLLOQUIUM MATHEMATICUM, 2009, 115 (02) :259-295