The Euler characteristic and Euler defect for comodules over Euler coalgebras

被引:7
作者
Simson, Daniel [1 ]
机构
[1] Nicholas Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
关键词
coalgebra; comodule; injective resolution; Euler characteristic; integral bilinear form; Grothendieck group; Betti number; INTERVALLY FINITE POSETS; TAME-WILD DICHOTOMY; SPLIT-SEQUENCES; CATEGORIES;
D O I
10.1017/is009010019jkt081
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field. We study a class of left C-comodules over a basic left Euler coalgebra C by means of the Euler Z-bilinear form (b) over cap (C) associated to C, the Euler characteristic chi(C)(M, N) of left C-comodules M, N, and the defect partial derivative(C) (M, N) is an element of Z associated to any computable Euler pair (M, N) of left C-comodules. We show that (b) over cap (C)(lgthM, lgthN) = chi(C)(M, N) + partial derivative(C)(M, N), for any computable Euler pair (M, N) of comodules over a left Euler coalgebra C. One of the main results of the paper asserts that the defect partial derivative(C)(M, N) is zero and (b) over cap (C)(lgthM, lgthN) = chi(C)(M, N), if the comodules M, N are finite-dimensional.
引用
收藏
页码:91 / 113
页数:23
相关论文
共 16 条
[1]  
Assem I., 2006, Elements of Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, V1
[2]   Almost split sequences for comodules [J].
Chin, W ;
Kleiner, M ;
Quinn, D .
JOURNAL OF ALGEBRA, 2002, 249 (01) :1-19
[3]  
Chin W., 2004, LECT NOTES PURE APPL, V237, P109
[4]   Coxeter transformation and inverses of Cartan matrices for coalgebras [J].
Chin, William ;
Simson, Daniel .
JOURNAL OF ALGEBRA, 2010, 324 (09) :2223-2248
[5]   Homological dimension of coalgebras and crossed coproducts [J].
Dascalescu, S ;
Nastasescu, C ;
Torrecillas, B .
K-THEORY, 2001, 23 (01) :53-65
[6]  
Dascalescu S., 2001, LECT NOTES PURE APPL, V235
[7]   Abelian categories, almost split sequences, and comodules [J].
Kleiner, M ;
Reiten, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (08) :3201-3214
[8]   Minimal projective resolutions for comodules [J].
López-Ramos, JA ;
Nastasescu, C ;
Torrecillas, B .
K-THEORY, 2004, 32 (04) :357-364
[9]  
MONTGOMERY S, 1993, 82 CMBS AMS
[10]  
Simson D, 2007, LONDON MATH SOC STUD, V2