Detection of carbamazepine in saliva based on surface-enhanced Raman spectroscopy

被引:13
|
作者
Chen, Ning [1 ]
Yuan, Yanbing [1 ]
Lu, Ping [1 ]
Wang, Luyao [1 ]
Zhang, Xuedian [1 ,2 ]
Chen, Hui [1 ]
Ma, Pei [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Opt Elect & Comp Engn, Key Lab Opt Technol & Instrument Med, Minist Educ, Shanghai 200093, Peoples R China
[2] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
LIQUID-CHROMATOGRAPHY; PLASMON RESONANCE; ORAL FLUID; DRUG CONCENTRATIONS; GRAPHENE OXIDE; SERS; BLOOD; SIZE; NANOPARTICLES; METABOLITES;
D O I
10.1364/BOE.440939
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Carbamazepine (CBZ) is a commonly used drug for the treatment of epilepsy. Due to the narrow effective range, CBZ concentration was usually monitored with blood draw from patients. Frequent blood draw is inconvenient and causes physical and psychological pain. Therefore, highly-sensitive, rapid, label-free, and non-invasive drug detection methods can be alternatives to bring a relief. In this work, we have proposed a method for the non-invasive detection of CBZ using surface-enhanced Raman spectroscopy (SERS). Gold-silver core-shell nanomaterial substrates were prepared and optimized. Salivary CBZ concentration was measured with SERS as a non-invasive alternative to blood draw. The results showed that there was a linear relationship between SERS response and CBZ concentration in the entire measured range of 10(-1) similar to 10(-8) mol/L. The detection limit of this method was 1.26 x 10(-9) mol/L. Satisfactory repeatability and stability were also demonstrated. Due to its high sensitivity and ease of operation, the proposed method can serve as an alternative to blood draw for non-invasively monitoring CBZ concentration. It also has great potentials in many other applications of biomedical sciences. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:7673 / 7688
页数:16
相关论文
共 50 条
  • [21] Recent progress in mycotoxins detection based on surface-enhanced Raman spectroscopy
    Zhai, Wenlei
    You, Tianyan
    Ouyang, Xihui
    Wang, Meng
    COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2021, 20 (02): : 1887 - 1909
  • [22] Applications of surface-enhanced Raman spectroscopy in detection fields
    Lin, Ting
    Song, Ya-Li
    Liao, Juan
    Liu, Fang
    Zeng, Ting-Ting
    NANOMEDICINE, 2020, 15 (30) : 2971 - 2990
  • [23] Cypermethrin insecticide detection by surface-enhanced Raman spectroscopy
    Puente, Carlos
    Pineda, Nayely
    Lopez, Israel
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2023, 98 (08) : 1863 - 1867
  • [24] Chemical agent detection by surface-enhanced Raman spectroscopy
    Farquharson, S
    Gift, A
    Maksymiuk, P
    Inscore, F
    Smith, W
    Morrisey, K
    Christesen, SD
    CHEMICAL AND BIOLOGICAL POINT SENSORS FOR HOMELAND DEFENSE, 2004, 5269 : 16 - 22
  • [25] Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy
    Sengupta, Atanu
    Brar, Navpreet
    Davis, E. James
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2007, 309 (01) : 36 - 43
  • [26] Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy
    Zhang, Dongmao
    Haputhanthri, Rukshani
    Ansar, Siyam M.
    Vangala, Karthikeshwar
    De Silva, Hondamuni I.
    Sygula, Andrzej
    Saebo, Svein
    Pittman, Charles U., Jr.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 398 (7-8) : 3193 - 3201
  • [27] Applications of surface-enhanced Raman spectroscopy in environmental detection
    Terry, Lynn R.
    Sanders, Sage
    Potoff, Rebecca H.
    Kruel, JacobW.
    Jain, Manan
    Guo, Huiyuan
    ANALYTICAL SCIENCE ADVANCES, 2022, 3 (3-4): : 113 - 145
  • [28] Human metabolite detection by surface-enhanced Raman spectroscopy
    Lu, Yao
    Lin, Li
    Ye, Jian
    MATERIALS TODAY BIO, 2022, 13
  • [29] Ultrasensitive detection of malondialdehyde with surface-enhanced Raman spectroscopy
    Dongmao Zhang
    Rukshani Haputhanthri
    Siyam M. Ansar
    Karthikeshwar Vangala
    Hondamuni I. De Silva
    Andrzej Sygula
    Svein Saebo
    Charles U. Pittman
    Analytical and Bioanalytical Chemistry, 2010, 398 : 3193 - 3201
  • [30] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062