Toward a Personalized Real-Time Diagnosis in Neonatal Seizure Detection

被引:13
作者
Temko, Andriy [1 ,2 ]
Sarkar, Achintya Kr. [3 ]
Boylan, Geraldine B. [4 ,5 ]
Mathieson, Sean [6 ]
Marnane, William P. [1 ,2 ]
Lightbody, Gordon [1 ,2 ]
机构
[1] Univ Coll Cork, Dept Elect & Elect Engn, Cork T12 P2FY, Ireland
[2] Univ Coll Cork, Irish Ctr Fetal & Neonatal Translat Res, Cork T12 P2FY, Ireland
[3] Aalborg Univ, Dept Elect Syst, DK-9220 Aalborg, Denmark
[4] Univ Coll Cork, Dept Pediat, Cork T12 P2FY, Ireland
[5] Univ Coll Cork, Child Hlth & INFANT Ctr, Cork T12 P2FY, Ireland
[6] UCL, Inst Womens Hlth, Acad Res Dept Neonatol, London WC1E 6AU, England
基金
爱尔兰科学基金会; 英国惠康基金;
关键词
Neonatal; seizure; detection; online adaptation; DETECTION ALGORITHM; EEG; CLASSIFIER; KNOWLEDGE; CURVES; SYSTEM; AREAS;
D O I
10.1109/JTEHM.2017.2737992
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The problem of creating a personalized seizure detection algorithm for newborns is tackled in this paper. A probabilistic framework for semi-supervised adaptation of a generic patient-independent neonatal seizure detector is proposed. A system that is based on a combination of patient-adaptive (generative) and patient-independent (discriminative) classifiers is designed and evaluated on a large database of unedited continuous multichannel neonatal EEG recordings of over 800 h in duration. It is shown that an improvement in the detection of neonatal seizures over the course of long EEG recordings is achievable with on-the-fly incorporation of patient-specific EEG characteristics. In the clinical setting, the employment of the developed system will maintain a seizure detection rate at 70% while halving the number of false detections per hour, from 0.4 to 0.2 FD/h. This is the first study to propose the use of online adaptation without clinical labels, to build a personalized diagnostic system for the detection of neonatal seizures.
引用
收藏
页数:14
相关论文
共 36 条
[1]   A multistage knowledge-based system for EEG seizure detection in newborn infants [J].
Aarabi, Ardalan ;
Grebe, Reinhard ;
Wallois, Fabrice .
CLINICAL NEUROPHYSIOLOGY, 2007, 118 (12) :2781-2797
[2]   Seizure detection in the neonatal EEG with synchronization likelihood [J].
Altenburg, J ;
Vermeulen, RJ ;
Strijers, RLM ;
Fetter, WR ;
Stam, CJ .
CLINICAL NEUROPHYSIOLOGY, 2003, 114 (01) :50-55
[3]  
[Anonymous], 1982, ESTIMATION DEPENDENC
[4]   Improved multi-stage neonatal seizure detection using a heuristic classifier and a data-driven post-processor [J].
Ansari, A. H. ;
Cherian, P. J. ;
Dereymaeker, A. ;
Matic, V. ;
Jansen, K. ;
De Wispelaere, L. ;
Dielman, C. ;
Vervisch, J. ;
Swarte, R. M. ;
Govaert, P. ;
Naulaers, G. ;
De Vos, M. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2016, 127 (09) :3014-3024
[5]  
Bordes A, 2005, J MACH LEARN RES, V6, P1579
[6]   An international survey of EEG use in the neonatal intensive care unit [J].
Boylan, G. B. ;
Burgoyne, L. ;
Moore, C. ;
O'Flaherty, B. ;
Rennie, J. M. .
ACTA PAEDIATRICA, 2010, 99 (08) :1150-1155
[7]  
Cauwenberghs G, 2001, ADV NEUR IN, V13, P409
[8]   A computer-aided detection of EEG seizures in infants: A singular-spectrum approach and performance comparison [J].
Celka, P ;
Colditz, P .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (05) :455-462
[9]   Automated neonatal seizure detection mimicking a human observer reading EEG [J].
Deburchgraeve, W. ;
Cherian, P. J. ;
De Vos, M. ;
Swarte, R. M. ;
Blok, J. H. ;
Visser, G. H. ;
Govaert, P. ;
Van Huffel, S. .
CLINICAL NEUROPHYSIOLOGY, 2008, 119 (11) :2447-2454
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38