Nonlinear self-stabilizing processes - I Existence, invariant probability, propagation of chaos

被引:70
作者
Benachour, S
Roynette, B
Talay, D
Vallois, P
机构
[1] Univ Nancy 1, Inst Elie Cartan, UMR 9973, F-54506 Vandoeuvre Nancy, France
[2] INRIA Sophia Antipolis, F-06902 Sophia Antipolis, France
关键词
D O I
10.1016/S0304-4149(98)00018-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Taking an odd, non-decreasing function beta, we consider the (nonlinear) stochastic differential equation X-t = X-0 + B-t - 1/2 integral(0)(t) beta * u(s, X-s)ds, t greater than or equal to 0, P(X-t is an element of dx) = u(t, dx), t>0 ((E) over tilde) and we prove the existence and uniqueness of solution of Eq. ((E) over tilde), where beta * u(s,x) = integral(R) beta(x-y)u(s, dy) and (B-t; t greater than or equal to 0) is a one-dimensional Brownian motion, B-0 = 0. We show that Eq. ((E) over tilde) admits a stationary probability measure and investigate the link between Eq, ((E) over tilde) and the associated system of particles. (C) 1998 Published by Elsevier Science B.V. All rights reserved.
引用
收藏
页码:173 / 201
页数:29
相关论文
共 10 条
[2]   A CERTAIN CLASS OF DIFFUSION-PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS [J].
FUNAKI, T .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 67 (03) :331-348
[3]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224
[4]  
KEAN M, 1966, P NATL ACAD SCI USA, V56, P1907
[5]   A LAW OF LARGE NUMBERS FOR MODERATELY INTERACTING DIFFUSION-PROCESSES [J].
OELSCHLAGER, K .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (02) :279-322
[6]  
Sznitman A.S., 1989, LECT NOTES MATH, V1464
[7]   A MULTIDIMENSIONAL PROCESS INVOLVING LOCAL TIME [J].
SZNITMAN, AS ;
VARADHAN, SRS .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (04) :553-579
[8]  
Tamura Y., 1987, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V34, P443
[9]  
Tamura Y., 1984, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V31, P195
[10]  
Varadhan S. R. S., 1979, GRUNDLEHREN MATH WIS, V233