A DYNAMIC PROGRAMMING APPROACH TO THE PARISI FUNCTIONAL

被引:37
|
作者
Jagannath, Aukosh [1 ]
Tobasco, Ian [1 ]
机构
[1] Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
Parisi formula; Sherrington-Kirkpatrick model; dynamic programming; FORMULA;
D O I
10.1090/proc/12968
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
G. Parisi predicted an important variational formula for the thermodynamic limit of the intensive free energy for a class of mean field spin glasses. In this paper, we present an elementary approach to the study of the Parisi functional using stochastic dynamic programing and semi-linear PDE. We give a derivation of important properties of the Parisi PDE avoiding the use of Ruelle Probability Cascades and Cole-Hopf transformations. As an application, we give a simple proof of the strict convexity of the Parisi functional, which was recently proved by Auffinger and Chen.
引用
收藏
页码:3135 / 3150
页数:16
相关论文
共 50 条
  • [31] On Solvability for Certain Functional Equations Arising in Dynamic Programming
    Deepmala
    Das, A. K.
    MATHEMATICS AND COMPUTING, 2015, 139 : 79 - 94
  • [32] A multi-parametric programming approach for constrained dynamic programming problems
    Nuno P. Faísca
    Konstantinos I. Kouramas
    Pedro M. Saraiva
    Berç Rustem
    Efstratios N. Pistikopoulos
    Optimization Letters, 2008, 2 : 267 - 280
  • [33] Aircraft replacement scheduling: A dynamic programming approach
    Hsu, Chaug-Ing
    Li, Hui-Chieh
    Liu, Su-Miao
    Chao, Ching-Cheng
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2011, 47 (01) : 41 - 60
  • [34] DYNAMIC-PROGRAMMING APPROACH FOR NONLINEAR-SYSTEMS
    MORENO, L
    ACOSTA, L
    HAMILTON, A
    MENDEZ, JA
    SANCHEZ, JL
    PINEIRO, JD
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1994, 141 (06): : 409 - 417
  • [35] A polyhedral approximation approach to concave numerical dynamic programming
    Fukushima, Kenichi
    Waki, Yuichiro
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2013, 37 (11) : 2322 - 2335
  • [36] Predictive Dynamic Programming Heuristic Approach for Inventory Control
    Dendis, Alexandros
    Chamilothoris, Georgios
    FRONTIERS OF ARTIFICIAL INTELLIGENCE, ETHICS, AND MULTIDISCIPLINARY APPLICATIONS, FAIEMA 2023, 2024, : 247 - 260
  • [37] Target Detection Using Radar with Dynamic Programming Approach
    Fan, Lina
    Wang, Jinkuan
    Yan, Dongmei
    Wang, Bin
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 442 - +
  • [38] Workforce Size Problem in Manufacturing with Dynamic Programming Approach
    So, Mei Kuan
    Kek, Sie Long
    PROCEEDINGS OF THE 27TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM27), 2020, 2266
  • [39] Optimal control problems on manifolds: a dynamic programming approach
    Chryssochoos, I
    Vinter, RB
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 287 (01) : 118 - 140
  • [40] A dynamic programming approach for pricing options embedded in bonds
    Ben-Ameur, Hatem
    Breton, Michele
    Karoui, Lotfi
    L'Ecuyer, Pierre
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2007, 31 (07) : 2212 - 2233