Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum

被引:59
作者
Jojima, Toru [1 ]
Noburyu, Ryoji [1 ]
Sasaki, Miho [1 ]
Tajima, Takahisa [1 ]
Suda, Masako [1 ]
Yukawa, Hideaki [1 ]
Inui, Masayuki [1 ,2 ]
机构
[1] Res Inst Innovat Technol Earth, Kyoto 6190292, Japan
[2] Nara Inst Sci & Technol, Grad Sch Biol Sci, Nara 6300101, Japan
关键词
Corynebacterium glutamicum; Oxygen deprivation; Ethanol; Glycolytic enzymes; Mixed sugars; OXYGEN-DEPRIVATION CONDITIONS; EFFICIENT ISOBUTANOL PRODUCTION; L-VALINE PRODUCTION; SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI; HEXOSE TRANSPORTERS; XYLOSE ISOMERASE; D-GLUCOSE; OVEREXPRESSION; FERMENTATION;
D O I
10.1007/s00253-014-6223-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95 % of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.
引用
收藏
页码:1165 / 1172
页数:8
相关论文
共 34 条
[1]  
[Anonymous], BIOL IND MICROORGANI
[2]   Corynebacterium glutamicum Tailored for Efficient Isobutanol Production [J].
Blombach, Bastian ;
Riester, Tanja ;
Wieschalka, Stefan ;
Ziert, Christian ;
Youn, Jung-Won ;
Wendisch, Volker F. ;
Eikmanns, Bernhard J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2011, 77 (10) :3300-3310
[3]   Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose [J].
Cao, Limin ;
Tang, Xingliang ;
Zhang, Xinyuan ;
Zhang, Jingtao ;
Tian, Xuelei ;
Wang, Jingyu ;
Xiong, Mingyong ;
Xiao, Wei .
METABOLIC ENGINEERING, 2014, 24 :150-159
[4]  
Emmerling M, 2000, BIOTECHNOL BIOENG, V67, P623, DOI 10.1002/(SICI)1097-0290(20000305)67:5<623::AID-BIT13>3.0.CO
[5]  
2-W
[6]   Glucose Catabolism of Escherichia coli Strains with Increased Activity and Altered Regulation of Key Glycolytic Enzymes [J].
Emmerling, Marcel ;
Bailey, James E. ;
Sauer, Uwe .
METABOLIC ENGINEERING, 1999, 1 (02) :117-127
[7]   Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose [J].
Farwick, Alexander ;
Bruder, Stefan ;
Schadeweg, Virginia ;
Oreb, Mislav ;
Boles, Eckhard .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (14) :5159-5164
[8]   Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters [J].
Goncalves, Davi L. ;
Matsushika, Akinori ;
de Sales, Belisa B. ;
Goshima, Tetsuya ;
Bon, Elba P. S. ;
Stambuk, Boris U. .
ENZYME AND MICROBIAL TECHNOLOGY, 2014, 63 :13-20
[9]   Engineering of Corynebacterium glutamicum for High-Yield L-Valine Production under Oxygen Deprivation Conditions [J].
Hasegawa, Satoshi ;
Suda, Masako ;
Uematsu, Kimio ;
Natsuma, Yumi ;
Hiraga, Kazumi ;
Jojima, Toru ;
Inui, Masayuki ;
Yukawa, Hideaki .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (04) :1250-1257
[10]   Improvement of the Redox Balance Increases L-Valine Production by Corynebacterium glutamicum under Oxygen Deprivation Conditions [J].
Hasegawa, Satoshi ;
Uematsu, Kimio ;
Natsuma, Yumi ;
Suda, Masako ;
Hiraga, Kazumi ;
Jojima, Toru ;
Inui, Masayuki ;
Yukawa, Hideaki .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (03) :865-875