Life estimation methodology for short fiber reinforced polymers under thermo-mechanical loading in automotive applications

被引:13
|
作者
Schaaf, A. [1 ]
De Monte, M. [1 ]
Moosbrugger, E. [1 ]
Vormwald, M. [2 ]
Quaresimin, M. [3 ]
机构
[1] Robert Bosch GmbH, Corp Sect Res & Adv Engn, Adv Prod Technol, Plast Engn CR APP, D-71301 Waiblingen, Germany
[2] Tech Univ Darmstadt, Fachgebiet Werkstoffmech, D-64287 Darmstadt, Germany
[3] Univ Padua, Dept Management & Engn, I-36100 Vicenza, Italy
关键词
Kurzfaserverstarkte Thermoplaste; isotherme dehnungsgeregelte Ermudung; Mikroskopie; thermo-mechanische Ermudung; Finite-Elemente-Modellierung; Kontrollvolumenansatz; Mittelspannungsparameter (MSP); Short fiber reinforced thermoplastics; Isothermal strain controlled fatigue; Microscopy; Thermo-mechanical fatigue; Finite element modeling; Control volume approach; mean stress parameter (MSP); V-SHAPED NOTCHES; FATIGUE BEHAVIOR; THERMOPLASTICS; ORIENTATION; DAMAGE; PARTS;
D O I
10.1002/mawe.201400377
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a FE based lifetime assessment methodology for short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical fatigue (TMF) loading is presented. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at four different temperatures and thermo-mechanical fatigue tests were conducted on plain and notched specimens. Through a comparative microscopic investigation of thermo-mechanical fatigue fracture surfaces and isothermal strain controlled fatigue fracture surfaces created at different temperatures the material state (i.e. the temperature) at which thermo-mechanical fatigue failure occurs was determined. On the basis of this insight a life estimation methodology derived from a strain energy density (SED) based approach was developed for the corresponding isothermal strain controlled fatigue load case [1]. Through consideration of additional effects occurring during thermo-mechanical fatigue testing (i.e. relaxation, spatial temperature gradients, creep damage due to low testing frequencies and plastic overloads) the isothermal approach was successfully adapted to the thermo-mechanical fatigue load case. In diesem Aufsatz wird ein FE basierter Lebensdauerberechnungsansatz fur kurzglasfaserverstarktes Polybutylenterephthalat (PBT-GF30) unter thermo-mechanischer Ermudungsbeanspruchung (TMF) prasentiert. Um das Ermudungsverhalten des Werkstoffs zu charakterisieren, wurden an gekerbten und ungekerbten Probekorpern sowohl isotherme dehnungsgeregelte Ermudungsversuche (ISCF) bei vier verschiedenen Temperaturen als auch Thermomechanische Ermudungstests durchgefuhrt. Durch eine vergleichende mikroskopische Untersuchung von TMF und ISCF Bruchoberflachen konnte ermittelt werden bei welchem Materialzustand (d.h. bei welcher Temperatur) die Schadigung unter TMF Bedingungen entsteht. Basierend auf dieser Erkenntnis und einem Kontrollvolumenansatz wurde eine Lebensdauerberechnungsmethode fur den zugehorigen isothermen Lastfall hergeleitet [1]. Durch Berucksichtigung spezifischer Einflusse der thermo-mechanischen Ermudungsbeanspruchung (z.B. Relaxation, raumliche Temperaturgradienten, Kriechschadigung und plastische uberlasten) konnte der isotherme Ansatz erfolgreich auf den Lastfall der thermo-mechanischen Ermudungsbeanspruchung ubertragen werden.
引用
收藏
页码:214 / 228
页数:15
相关论文
共 50 条
  • [41] Effect of thermo-mechanical and low-cycle preloading on the strength of carbon fiber-reinforced ceramic matrix composites
    Flauder, Stefan
    Wich, Felix
    Sha, Jianjun
    Langhof, Nico
    Krenkel, Walter
    Schaffoener, Stefan
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (13) : 5474 - 5483
  • [42] Do mechanical and environmental loading have a synergistic effect on the degradation of pultruded glass fiber reinforced polymers?
    Pour-Ghaz, Mohammad
    Miller, Bryant L. H.
    Alla, Omar Khalaf
    Rizkalla, Sami
    COMPOSITES PART B-ENGINEERING, 2016, 106 : 344 - 355
  • [43] Damage initiation and evolution in short fiber reinforced polyamide under fatigue loading: Influence of fiber volume fraction
    Belmonte, Enrico
    De Monte, Matthias
    Hoffmann, Christian-James
    Quaresimin, Marino
    COMPOSITES PART B-ENGINEERING, 2017, 113 : 331 - 341
  • [44] Propagation behavior of naturally initiated small crack in austenitic heat resistant steel under thermo-mechanical fatigue loading
    Yamazaki, Yasuhiro
    Fujiki, Wataru
    Hara, Yutaro
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS XII, 2014, 577-578 : 373 - +
  • [45] Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading
    Bartosak, Michal
    INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
  • [46] A hierarchical multi-scale analytical approach for predicting the elastic behavior of short fiber reinforced polymers under triaxial and flexural loading conditions
    Ahmadi, H.
    Hajikazemi, M.
    Rashidinejad, E.
    Sinchuk, Y.
    Van Paepegem, W.
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 225
  • [47] Simplified numerical approach for the thermo-mechanical analysis of steelmaking components under cyclic loading: an anode for electric arc furnace
    Moro, L.
    Benasciutti, D.
    De Bona, F.
    IRONMAKING & STEELMAKING, 2019, 46 (01) : 56 - 65
  • [48] Fatigue behavior and life prediction of carbon fiber reinforced concrete under cyclic flexural loading
    Wang, Wei
    Wu, Sigang
    Dai, Hongzhe
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 434 (1-2): : 347 - 351
  • [49] Numerical Study on the Effect of Matrix Self-Heating on the Thermo-Visco-Plastic Response of Continuous Fiber-Reinforced Polymers under Transverse Tensile Loading
    Sevenois, Ruben D. B.
    Hao, Pei
    Van Paepegem, Wim
    Gilabert, Francisco A.
    POLYMERS, 2022, 14 (10)
  • [50] A simple life prediction method for 304L stainless steel structures under fatigue-dominated thermo-mechanical fatigue loadings
    Bae, Keun-Ho
    Kim, Hyun-Ho
    Lee, Soon-Bok
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 529 : 370 - 377