On the existence of solutions for discrete elliptic boundary value problems

被引:18
作者
Galewski, Marek [1 ]
Orpel, Aleksandra [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, PL-90238 Lodz, Poland
关键词
discrete BVP; elliptic problem; variational method; monotonicity; NONTRIVIAL SOLUTIONS; NONLINEAR-SYSTEM;
D O I
10.1080/00036811.2010.499508
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using critical point theory and some monotonicity results we consider the existence of solutions to a boundary value problem connected with the discrete elliptic equation with a positive parameter.
引用
收藏
页码:1879 / 1891
页数:13
相关论文
共 24 条
[1]   Multiple positive solutions of singular discrete p-Laplacian problems via variational methods [J].
Agarwal, Ravi P. ;
Perera, Kanishka ;
O'Regan, Donal .
ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) :93-99
[2]   Advances in difference equations II - Preface [J].
Agarwal, RP .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (10-12) :XV-XV
[3]  
Agarwal RP., 1992, DIFFERENCE EQUATIONS
[4]  
[Anonymous], 1987, Problemes de Dirichlet Variationnels non Lineaires
[5]  
[Anonymous], 1999, INTRO DIFFERENCE EQU, DOI DOI 10.1007/978-1-4757-3110-1
[6]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[7]   Nontrivial solutions for a nonlinear discrete elliptic equation with periodic boundary conditions [J].
Bai, Liang ;
Zhang, Guang .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) :321-333
[8]   Existence theorems of periodic solutions for second-order nonlinear difference equations [J].
Cai, Xiaochun ;
Yu, Jianshe .
ADVANCES IN DIFFERENCE EQUATIONS, 2008, 2008 (1)
[9]  
Fucik S., 1980, STUDIES APPL MECH, V2
[10]   Existence of Three Positive Solutions for m-Point Discrete Boundary Value Problems with p-Laplacian [J].
Guo, Yanping ;
Wei, Wenying ;
Chen, Yuerong .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009 :1-15