Degenerate distribution semigroups and well-posedness of the Cauchy problem

被引:2
作者
Melnikova, IV [1 ]
Anufrieva, UA [1 ]
Ushkov, VY [1 ]
机构
[1] Ural State Univ, Dept Math, Ekaterinburg 620083, Russia
基金
俄罗斯基础研究基金会;
关键词
Cauchy problem; well-posedness; Banach space; abstract distribution; semigroup; solution operator; generator;
D O I
10.1080/10652469808819169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cauchy problem for the degenerate first order equation Bu'(t) = Au(t), t greater than or equal to 0, u(0) = x, kerB not equal {0}, or the equivalent Cauchy problem for the inclusion u'(t) is an element of B-1 Au(t), t greater than or equal to 0, u(0) = x, are studied in the space of abstract distributions. Well-posedness conditions are obtained in terms distribution semigroups and integrated semigroups.
引用
收藏
页码:247 / 256
页数:10
相关论文
共 13 条
  • [1] VECTOR-VALUED LAPLACE TRANSFORMS AND CAUCHY-PROBLEMS
    ARENDT, W
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (03) : 327 - 352
  • [2] BREMERMANN H, 1965, DISTRIBUTIONS COMPLE
  • [3] Chazarain J., 1971, J FUNCT ANAL, V7, P386, DOI 10.1016/0022-1236(71)90027-9
  • [4] DAVIES EB, 1987, P LOND MATH SOC, V55, P181
  • [5] Fattorini H.O., 1983, ENCY MATH APPL, V18
  • [6] Ivanov V. K., 1995, DIFFERENTIAL OPERATO
  • [7] Komura T., 1968, J FUNCT ANAL, V2, P258
  • [8] Lions J.L, 1960, PORT MATH, V19, P141
  • [9] Melnikova I. V., 1995, J. Inverse Ill-Posed Probl., V3, P149
  • [10] MELNIKOVA IV, 1995, SOVREMENNAYA MATEMAT, V27, P5