COMPLEX VECTOR FIELDS AND HYPOELLIPTIC PARTIAL DIFFERENTIAL OPERATORS

被引:6
作者
Altomani, Andrea [1 ]
Hill, C. Denson [2 ]
Nacinovich, Mauro [3 ]
Porten, Egmont [4 ]
机构
[1] Univ Luxembourg, Res Unity Math, L-1511 Luxembourg, Luxembourg
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
[3] II Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
[4] Mid Sweden Univ, Dept Math, S-85170 Sundsvall, Sweden
关键词
Complex distribution; subelliptic estimate; hypoellipticity; Levi form; CR manifold; pseudoconcavity; flag manifold; CR MANIFOLDS; DERIVATIVES;
D O I
10.5802/aif.2545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a subelliptic estimate for systems of complex vector fields under some assumptions that generalize the essential pseudoconcavity for CR manifolds, that was first introduced by two of the authors; and the Hormander's bracket condition for real vector fields. Applications are given to prove the hypoellipticity of first order systems and second order partial differential operators. Finally we describe a class of compact homogeneous CR manifolds for which the distribution of (0,1) vector fields satisfies a subelliptic estimate.
引用
收藏
页码:987 / 1034
页数:48
相关论文
共 50 条
[41]   Orbits and global unique continuation for systems of vector fields [J].
S. Berhanu ;
G. A. Mendoza .
The Journal of Geometric Analysis, 1997, 7 (2) :173-194
[42]   Regularity and solvability of linear differential operators in Gevrey spaces [J].
Araujo, G. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (5-6) :729-758
[43]   Differential operators on quantized flag manifolds at roots of unity [J].
Tanisaki, Toshiyuki .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :2235-2294
[44]   Pseudo-differential operators with isotropic symbols, Wick and anti-Wick operators, and hypoellipticity [J].
Teofanov, Nenad ;
Toft, Joachim ;
Wahlberg, Patrik .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 167 :48-100
[45]   A Gevrey Differential Complex on the Torus [J].
da Silva, P. L. Dattori ;
Meziani, A. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (01)
[46]   A Gevrey Differential Complex on the Torus [J].
P. L. Dattori da Silva ;
A. Meziani .
Journal of Fourier Analysis and Applications, 2020, 26
[47]   Probabilistic solutions of fractional differential and partial differential equations and their Monte Carlo simulations [J].
Oraby, T. ;
Suazo, E. ;
Arrubla, H. .
CHAOS SOLITONS & FRACTALS, 2023, 166
[48]   On the classification of complex vector bundles of stable rank [J].
Banica, Constantin ;
Putinar, Mihai .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (03) :271-291
[49]   On the classification of complex vector bundles of stable rank [J].
Constantin Banica ;
Mihai Putinar .
Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 :271-291
[50]   Gevrey regularity for a class of sums of squares of monomial vector fields [J].
Bove, Antonio ;
Mughetti, Marco .
ADVANCES IN MATHEMATICS, 2020, 373