Molecular simulation of adsorption thermodynamics and dynamics behavior of GOs at air-water interface

被引:1
|
作者
Gu, Shuyin [1 ]
Chen, Kai [1 ]
Jin, Yezhi [1 ]
Yang, Xiaoning [1 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Graphene oxide (GO); air-water interface; adsorption; free-energy; molecular simulation; REDUCED GRAPHENE OXIDE; AQUEOUS-SOLUTIONS; TRANSPARENT; CHEMISTRY; SURFACE; DESALINATION; FILMS;
D O I
10.1080/08927022.2021.1967347
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The adsorption of two-dimensional (2-D) graphene oxide (GO) nanosheets at the air-water interface has broad technological implications for GO-based functional material preparations. Molecular-level understanding of the adsorption mechanism and interfacial behaviour is of great significance. Here, the adsorption free energy of GO nanosheets at the air-water interface was simulated, in which the effect of functional groups and deprotonation has been investigated. It was observed that the neutral GOs are generally thermodynamically favourable for the interface adsorption, while the deprotonated GO sheet has no such interface activity. Although the carboxyl group can enhance the interface adsorption minimum in the free energy profile, thereby improving the interfacial activity of the GO sheet, the oxidisation degree on GO is the main controlling factor determining the interface affinity. The interfacial morphology and dynamics of GO nanosheets have also been simulated, in which a parallel movement with a 2-D anisotropic rotation along the interface was revealed. Our simulation results provide new insights into the adsorption mechanism and behaviour of GO at the air-water interface.
引用
收藏
页码:1273 / 1281
页数:9
相关论文
共 50 条
  • [11] Adsorption of β-Lactoglobulin variants A and B to the air-water interface
    Mackie, AR
    Husband, FA
    Holt, C
    Wilde, PJ
    INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 1999, 34 (5-6) : 509 - 516
  • [12] Adsorption and rheological properties of biopolyrners at the air-water interface
    Baeza, Rosa
    Pilosof, Ana M. R.
    Sanchez, Cecilio Carrera
    Patino, Juan M. Rodriguez
    AICHE JOURNAL, 2006, 52 (07) : 2627 - 2638
  • [13] Predicting Adsorption of Organic Chemicals at the Air-Water Interface
    Goss, Kai-Uwe
    JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (44) : 12256 - 12259
  • [14] Dendrimers at the air-water interface: surface dynamics and molecular ordering
    Ahmad, Farhan
    Shin, Kwanwoo
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2006, 3 (2-3) : 353 - 371
  • [15] Adsorption dynamics of polymeric nanoparticles at an air-water interface with addition of surfactants
    Tian, Chang
    Feng, Jie
    Prud'homme, Robert K.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 575 : 416 - 424
  • [16] Molecular Dynamics Simulations of Small Halogenated Organics at the Air-Water Interface: Implications in Water Treatment and Atmospheric Chemistry
    Habartova, Alena
    Valsaraj, Kalliat T.
    Roeselova, Martina
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (38) : 9205 - 9215
  • [17] Polymer Behavior at the Air-Water Interface
    Gargallo, Ligia
    MRS BULLETIN, 2010, 35 (08) : 615 - 622
  • [18] Ultrafast Reorientational Dynamics of Leucine at the Air-Water Interface
    Donovan, Michael A.
    Yimer, Yeneneh Y.
    Pfaendtner, Jim
    Backus, Ellen H. G.
    Bonn, Mischa
    Weidner, Tobias
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (16) : 5226 - 5229
  • [19] Dynamics of amphiphilic diblock copolymers at the air-water interface
    Stocco, Antonio
    Tauer, Klaus
    Pispas, Stergios
    Sigel, Reinhard
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 355 (01) : 172 - 178
  • [20] Adsorption of ammonium perfluorooctanoate at the air-water interface
    Lu, JR
    Ottewill, RH
    Rennie, AR
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2001, 183 : 15 - 26