On Multivalued G-Monotone Ciric and Reich Contraction Mappings

被引:4
作者
Alfuraidan, M. R. [1 ]
Khamsi, M. A. [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
Ciric contraction mappings; directed graph; fixed point; monotone multivalued mappings; Pompeiu-Hausdorff distance; quasi-contraction; Reich contraction mappings; PARTIALLY ORDERED SETS; FIXED-POINT THEOREMS; PRINCIPLE; EQUATIONS;
D O I
10.2298/FIL1711285A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the existence of fixed points for multivalued G-monotone Ciric quasi-contraction and Reich contraction mappings in a metric space endowed with a graph G.
引用
收藏
页码:3285 / 3290
页数:6
相关论文
共 12 条
[1]   Remarks on monotone multivalued mappings on a metric space with a graph [J].
Alfuraidan, Monther Rashed .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[2]   On monotone Ciric quasi-contraction mappings with a graph [J].
Alfuraidan, Monther Rashed .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[3]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[4]   Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings [J].
Feng, YQ ;
Liu, SY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (01) :103-112
[5]  
Jachymski J, 2008, P AM MATH SOC, V136, P1359
[6]   Fixed point theorems for set-valued contractions in complete metric spaces [J].
Klim, D. ;
Wardowski, D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) :132-139
[7]   MULTI-VALUED CONTRACTION MAPPINGS [J].
NADLER, SB .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 30 (02) :475-&
[8]   Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations [J].
Nieto, JJ ;
Rodríguez-López, R .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (03) :223-239
[9]   A fixed point theorem in partially ordered sets and some applications to matrix equations [J].
Ran, ACM ;
Reurings, MCB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (05) :1435-1443
[10]  
Reich S, 1972, Boll. Unione Mat. Ital. (9), V5, P26