Cross-generation and cross-laboratory predictions of Affymetrix microarrays by rank-based methods

被引:18
作者
Liu, Hsi-Che [2 ,6 ,7 ]
Chen, Chien-Yu [1 ]
Liu, Yu-Ting [3 ]
Chu, Cheng-Bang [3 ]
Liang, Der-Cherng [2 ]
Shih, Lee-Yung [4 ]
Lin, Chih-Jen [5 ]
机构
[1] Natl Taiwan Univ, Dept Bioind Mechatron Engn, Taipei 106, Taiwan
[2] Mackay Mem Hosp, Dept Pediat, Taipei, Taiwan
[3] Yuan Univ, Grad Sch Biotechnol & Bioinformat, Chungli, Taiwan
[4] Chang Gung Univ, Div Hematol Oncol, Tao Yuan, Taiwan
[5] Natl Taiwan Univ, Dept Comp Sci, Taipei 10764, Taiwan
[6] Mackay Med Nursing & Management Coll, Taipei, Taiwan
[7] Taipei Med Univ, Sch Med, Taipei, Taiwan
关键词
affymetrix microarrays; cross-generation/laboratory prediction; rank-based normalization;
D O I
10.1016/j.jbi.2007.11.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Past experiments of the popular Affymetrix (Affy) microarrays have accumulated a huge amount of public data sets. To apply them for more wide studies, the comparability across generations and experimental environments is an important research topic. This paper particularly investigates the issue of cross-generation/laboratory predictions. That is, whether models built upon data of one generation (laboratory) can differentiate data of another. We consider eight public sets of three cancers. They are from different laboratories and are across various generations of Affy human microarrays. Each cancer has certain subtypes, and we investigate if a model trained from one set correctly differentiates another. We propose a simple rank-based approach to make data from different sources more comparable. Results show that it leads to higher prediction accuracy than using expression values. We further investigate normalization issues in preparing training/testing data. In addition, we discuss some pitfalls in evaluating cross-generation/laboratory predictions. To use data from various sources one must be cautious on some important but easily neglected steps. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:570 / 579
页数:10
相关论文
共 38 条
[1]  
*AFF, 2003, US GUID PROD COMP SP
[2]   Standardizing global gene expression analysis between laboratories and across platforms [J].
Bammler, T ;
Beyer, RP ;
Bhattacharya, S ;
Boorman, GA ;
Boyles, A ;
Bradford, BU ;
Bumgarner, RE ;
Bushel, PR ;
Chaturvedi, K ;
Choi, D ;
Cunningham, ML ;
Dengs, S ;
Dressman, HK ;
Fannin, RD ;
Farun, FM ;
Freedman, JH ;
Fry, RC ;
Harper, A ;
Humble, MC ;
Hurban, P ;
Kavanagh, TJ ;
Kaufmann, WK ;
Kerr, KF ;
Jing, L ;
Lapidus, JA ;
Lasarev, MR ;
Li, J ;
Li, YJ ;
Lobenhofer, EK ;
Lu, X ;
Malek, RL ;
Milton, S ;
Nagalla, SR ;
O'Malley, JP ;
Palmer, VS ;
Pattee, P ;
Paules, RS ;
Perou, CM ;
Phillips, K ;
Qin, LX ;
Qiu, Y ;
Quigley, SD ;
Rodland, M ;
Rusyn, I ;
Samson, LD ;
Schwartz, DA ;
Shi, Y ;
Shin, JL ;
Sieber, SO ;
Slifer, S .
NATURE METHODS, 2005, 2 (05) :351-356
[3]   Transformation of expression intensities across generations of affymetrix microarrays using sequence matching and regression modeling [J].
Bhattacharya, S ;
Mariani, TJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (18) :1-10
[4]   Multi-platform, multi-site, microarray-based human tumor classification [J].
Bloom, G ;
Yang, IV ;
Boulware, D ;
Kwong, KY ;
Coppola, D ;
Eschrich, S ;
Quackenbush, J ;
Yeatman, TJ .
AMERICAN JOURNAL OF PATHOLOGY, 2004, 164 (01) :9-16
[5]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[6]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[7]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[8]   Integrating probe-level expression changes across generations of Affymetrix arrays -: art. no. e193 [J].
Elo, LL ;
Lahti, L ;
Skottman, H ;
Kyläniemi, M ;
Lahesmaa, R ;
Aittokallio, T .
NUCLEIC ACIDS RESEARCH, 2005, 33 (22) :e193
[9]  
Geman Donald, 2004, Stat Appl Genet Mol Biol, V3, pArticle19
[10]   Mobilisation with G-CSF in healthy donors promotes a high but temporal deregulation of genes [J].
Hernández, JM ;
Castilla, C ;
Gutiérrez, NC ;
Isidro, IM ;
Delgado, M ;
de las Rivas, J ;
Fermiñán, E ;
García, JL ;
Ocio, EM ;
del Cañizo, MC ;
San Miguel, JF .
LEUKEMIA, 2005, 19 (06) :1088-1091