Bergman completeness of unbounded Hartogs domains

被引:12
作者
Pflug, P
Zwonek, W
机构
[1] Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
[2] Jagiellonian Univ, Inst Math, PL-30059 Krakow, Poland
关键词
D O I
10.1017/S0027763000009223
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some results for the Bergman functions in unbounded domains are shown. In particular, a class of unbounded Hartogs domains, which are Bergman complete and Bergman exhaustive, is given.
引用
收藏
页码:121 / 133
页数:13
相关论文
共 20 条
[1]  
[Anonymous], DISSERTATIONES MATH
[2]  
[Anonymous], 1999, ANN FAC SCI TOULOUSE
[3]   Hyperconvexity and Bergman completeness [J].
Blocki, Z ;
Pflug, P .
NAGOYA MATHEMATICAL JOURNAL, 1998, 151 :221-225
[4]   The Bergman metric and the pluricomplex Green function [J].
Blocki, Z .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (07) :2613-2625
[5]  
Bremermann J., 1955, LECT FUNCTIONS COMPL, P349
[6]   Behavior of the Bergman kernel at infinity [J].
Chen, BY ;
Kamimoto, J ;
Ohsawa, T .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) :695-708
[7]   Bergman completeness of hyperconvex manifolds [J].
Chen, BY .
NAGOYA MATHEMATICAL JOURNAL, 2004, 175 :165-170
[8]   The Bergman metric on a Stein manifold with a bounded plurisubharmonic function [J].
Chen, BY ;
Zhang, JH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (08) :2997-3009
[9]  
CHEN BY, ADDENDUM SERRE PROBL
[10]   The Bergman metric on hyperconvex domains [J].
Herbort, G .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :183-196