Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells

被引:85
作者
Li, Yihang [1 ,2 ]
Li, Yanpu [2 ]
Zhang, Shaowei [4 ]
Ren, Cong [5 ]
Jing, Yifu [2 ,3 ]
Cheng, Fupeng
Wu, Qixing
Lund, Peter [3 ]
Fan, Liangdong [2 ]
机构
[1] Xidian Univ, Acad Adv Interdisciplinary Res, Interdisciplinary Res Ctr Smart Sensors, Xian 710071, Shaanxi, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Guangdong, Peoples R China
[3] Aalto Univ, Dept Appl Phys, New Energy Technol Grp, Sch Sci, FI-00076 Aalto, Finland
[4] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[5] Xidian Univ, Sch Adv Mat & Nanotechnol, Dept Appl Chem, Xian 710071, Shaanxi, Peoples R China
关键词
solid oxide cell; CO-CO2 reversible conversion; epitaxial growth; perovskite oxides; alloy nanoparticles; SITU EXSOLVED CO; LAYERED PEROVSKITE; CARBON DEPOSITION; ANODE MATERIAL; CATHODE; SR2FE1.5MO0.5O6-DELTA; TECHNOLOGIES; REDUCTION; KINETICS; CATALYST;
D O I
10.1021/acsami.1c23548
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reversible solid oxide cells (RSOCs) can efficiently render the mutual conversion between electricity and chemicals, for example, electrolyzing CO2 to CO under a solid oxide electrolysis cell (SOEC) mode and oxidizing CO to CO2 under a solid oxide fuel cell (SOFC) mode. Nevertheless, the development of RSOCs is still hindered, owing to the lack of catalytically active and carbon-tolerant fuel electrodes. For improving mutual CO-CO2 conversion kinetics in RSOCs, here, we demonstrate a high-performing and durable fuel electrode consisting of redox-stable Sr-2(Fe, Mo)(2)O6-delta perovskite oxide and epitaxially endogenous NiFe alloy nanoparticles. The electrochemical impedance spectrum (EIS) and distribution of relaxation time (DRT) analyses reveal that surface/interface oxygen exchange kinetics and the CO/CO2 activation process are both greatly accelerated. The assembled single cell produces a maximum power density (MPD) of 443 mW cm(-2) at 800 degrees C under the SOFC mode, with the corresponding CO oxidation rate of 5.524 mL min(-1) cm(-2). On the other hand, a current density of -0.877 A cm(-2) is achieved at 1.46 V under the SOEC mode, equivalent to a CO2 reduction rate of 6.108 mL min cm(-2). Furthermore, reliable reversible conversion of CO-CO2 is proven with no performance degradation in 20 cycles under SOEC (1.3 V) and SOFC (0.6 V) modes. Therefore, our work provides an alternative way for designing highly active and durable fuel electrodes for RSOC applications.
引用
收藏
页码:9138 / 9150
页数:13
相关论文
共 62 条
  • [41] Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution
    Neagu, Dragos
    Oh, Tae-Sik
    Miller, David N.
    Menard, Herve
    Bukhari, Syed M.
    Gamble, Stephen R.
    Gorte, Raymond J.
    Vohs, John M.
    Irvine, John T. S.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [42] Neagu D, 2013, NAT CHEM, V5, P916, DOI [10.1038/NCHEM.1773, 10.1038/nchem.1773]
  • [43] In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells
    Niu, Bingbing
    Lu, Chunling
    Yi, Wendi
    Luo, Shijing
    Li, Xiangnan
    Zhong, Xiongwei
    Zhao, Xingzhong
    Xu, Baomin
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 270
  • [44] Hydrogen oxidation kinetics on a redox stable electrode for reversible solid-state electrochemical devices: The critical influence of hydrogen dissociation on the electrode surface
    Osinkin, D. A.
    [J]. ELECTROCHIMICA ACTA, 2021, 389
  • [45] Kinetics of CO oxidation and redox cycling of Sr2Fe1.5Mo0.5O6-δ electrode for symmetrical solid state electrochemical devices
    Osinkin, D. A.
    [J]. JOURNAL OF POWER SOURCES, 2019, 418 : 17 - 23
  • [46] A sulfur-tolerant cathode catalyst fabricated with in situ exsolved CoNi alloy nanoparticles anchored on a Ruddlesden-Popper support for CO2 electrolysis
    Park, Seongmin
    Kim, Yoongon
    Noh, Yuseong
    Kim, Taewook
    Han, Hyunsu
    Yoon, Wongeun
    Choi, Junil
    Yi, Sang-Ho
    Leec, Woon-Jae
    Kim, Won Bae
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) : 138 - 148
  • [47] In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO
    Park, Seongmin
    Kim, Yoongon
    Han, Hyunsu
    Chung, Yong Sik
    Yoon, Wongeun
    Choi, Junil
    Kim, Won Bae
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 248 (147-156) : 147 - 156
  • [48] Approaching Durable Single-Layer Fuel Cells: Promotion of Electroactivity and Charge Separation via Nanoalloy Redox Exsolution
    Shao, Kang
    Li, Fengjiao
    Zhang, Guanghong
    Zhang, Qianling
    Maliutina, Kristina
    Fan, Liangdong
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) : 27924 - 27933
  • [49] Nanocomposite electrodes for high current density over 3 A cm-2 in solid oxide electrolysis cells
    Shimada, Hiroyuki
    Yamaguchi, Toshiaki
    Kishimoto, Haruo
    Sumi, Hirofumi
    Yamaguchi, Yuki
    Nomura, Katsuhiro
    Fujishiro, Yoshinobu
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [50] Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor
    Shin, Tae Ho
    Myung, Jae-Ha
    Verbraeken, Maarten
    Kim, Guntae
    Irvine, John T. S.
    [J]. FARADAY DISCUSSIONS, 2015, 182 : 227 - 239