Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells

被引:85
作者
Li, Yihang [1 ,2 ]
Li, Yanpu [2 ]
Zhang, Shaowei [4 ]
Ren, Cong [5 ]
Jing, Yifu [2 ,3 ]
Cheng, Fupeng
Wu, Qixing
Lund, Peter [3 ]
Fan, Liangdong [2 ]
机构
[1] Xidian Univ, Acad Adv Interdisciplinary Res, Interdisciplinary Res Ctr Smart Sensors, Xian 710071, Shaanxi, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Guangdong, Peoples R China
[3] Aalto Univ, Dept Appl Phys, New Energy Technol Grp, Sch Sci, FI-00076 Aalto, Finland
[4] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[5] Xidian Univ, Sch Adv Mat & Nanotechnol, Dept Appl Chem, Xian 710071, Shaanxi, Peoples R China
关键词
solid oxide cell; CO-CO2 reversible conversion; epitaxial growth; perovskite oxides; alloy nanoparticles; SITU EXSOLVED CO; LAYERED PEROVSKITE; CARBON DEPOSITION; ANODE MATERIAL; CATHODE; SR2FE1.5MO0.5O6-DELTA; TECHNOLOGIES; REDUCTION; KINETICS; CATALYST;
D O I
10.1021/acsami.1c23548
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reversible solid oxide cells (RSOCs) can efficiently render the mutual conversion between electricity and chemicals, for example, electrolyzing CO2 to CO under a solid oxide electrolysis cell (SOEC) mode and oxidizing CO to CO2 under a solid oxide fuel cell (SOFC) mode. Nevertheless, the development of RSOCs is still hindered, owing to the lack of catalytically active and carbon-tolerant fuel electrodes. For improving mutual CO-CO2 conversion kinetics in RSOCs, here, we demonstrate a high-performing and durable fuel electrode consisting of redox-stable Sr-2(Fe, Mo)(2)O6-delta perovskite oxide and epitaxially endogenous NiFe alloy nanoparticles. The electrochemical impedance spectrum (EIS) and distribution of relaxation time (DRT) analyses reveal that surface/interface oxygen exchange kinetics and the CO/CO2 activation process are both greatly accelerated. The assembled single cell produces a maximum power density (MPD) of 443 mW cm(-2) at 800 degrees C under the SOFC mode, with the corresponding CO oxidation rate of 5.524 mL min(-1) cm(-2). On the other hand, a current density of -0.877 A cm(-2) is achieved at 1.46 V under the SOEC mode, equivalent to a CO2 reduction rate of 6.108 mL min cm(-2). Furthermore, reliable reversible conversion of CO-CO2 is proven with no performance degradation in 20 cycles under SOEC (1.3 V) and SOFC (0.6 V) modes. Therefore, our work provides an alternative way for designing highly active and durable fuel electrodes for RSOC applications.
引用
收藏
页码:9138 / 9150
页数:13
相关论文
共 62 条
  • [31] Highly Stable and Efficient Catalyst with In Situ Exsolved Fe-Ni Alloy Nanospheres Socketed on an Oxygen Deficient Perovskite for Direct CO2 Electrolysis
    Liu, Subiao
    Liu, Qingxia
    Luo, Jing-Li
    [J]. ACS CATALYSIS, 2016, 6 (09): : 6219 - 6228
  • [32] Robust redox-reversible perovskite type steam electrolyser electrode decorated with in situ exsolved metallic nanoparticles
    Liu, Tong
    Zhao, Yiqian
    Zhang, Xiaoyu
    Zhang, Hong
    Jiang, Guang
    Zhao, Wen
    Guo, Jiayi
    Chen, Fanglin
    Yan, Mufu
    Zhang, Yanxiang
    Wang, Yao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) : 582 - 591
  • [33] A robust solid oxide electrolyzer for highly efficient electrochemical reforming of methane and steam
    Liu, Tong
    Liu, Hao
    Zhang, Xiaoyu
    Lei, Libin
    Zhang, Yanxiang
    Yuan, Zhihao
    Chen, Fanglin
    Wang, Yao
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (22) : 13550 - 13558
  • [34] A Highly-Performed, Dual-Layered Cathode Supported Solid Oxide Electrolysis Cell for Efficient CO2 Electrolysis Fabricated by Phase Inversion Co-Tape Casting Method
    Liu, Tong
    Chen, Xi
    Wu, Jiajia
    Sheng, Zhongyi
    Liu, Guangrong
    Wang, Yao
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) : F1130 - F1135
  • [35] Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3
    Lu, Lanying
    Ni, Chengsheng
    Cassidy, Mark
    Irvine, John T. S.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (30) : 11708 - 11718
  • [36] Measurement and Modeling of the Impedance Characteristics of Porous La1-xSrxCoO3-δ Electrodes
    Lu, Yunxiang
    Kreller, Cortney
    Adler, Stuart B.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (04) : B513 - B525
  • [37] In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Co-Doped Sr2Fe1.5Mo0.5O6-δ Cathode for CO2 Electrolysis
    Lv, Houfu
    Lin, Le
    Zhang, Xiaomin
    Song, Yuefeng
    Matsumoto, Hiroaki
    Zeng, Chaobin
    Ta, Na
    Liu, Wei
    Gao, Dunfeng
    Wang, Guoxiong
    Bao, Xinhe
    [J]. ADVANCED MATERIALS, 2020, 32 (06)
  • [38] Reversible solid-oxide cells for clean and sustainable energy
    Mogensen, M. B.
    Chen, M.
    Frandsen, H. L.
    Graves, C.
    Hansen, J. B.
    Hansen, K., V
    Hauch, A.
    Jacobsen, T.
    Jensen, S. H.
    Skafte, T. L.
    Sun, X.
    [J]. CLEAN ENERGY, 2019, 3 (03): : 175 - 201
  • [39] In Situ Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring
    Neagu, Dragos
    Kyriakou, Vasileios
    Roiban, Ioan-Lucian
    Aouine, Mimoun
    Tang, Chenyang
    Caravaca, Angel
    Kousi, Kalliopi
    Schreur-Piet, Ingeborg
    Metcalfe, Ian S.
    Vernoux, Philippe
    van de Sanden, Mauritius C. M.
    Tsampas, Mihalis N.
    [J]. ACS NANO, 2019, 13 (11) : 12996 - 13005
  • [40] Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles
    Neagu, Dragos
    Papaioannou, Evangelos I.
    Ramli, Wan K. W.
    Miller, David N.
    Murdoch, Billy J.
    Menard, Herve
    Umar, Ahmed
    Barlow, Anders J.
    Cumpson, Peter J.
    Irvine, John T. S.
    Metcalfe, Ian S.
    [J]. NATURE COMMUNICATIONS, 2017, 8