Mutual Conversion of CO-CO2 on a Perovskite Fuel Electrode with Endogenous Alloy Nanoparticles for Reversible Solid Oxide Cells

被引:85
作者
Li, Yihang [1 ,2 ]
Li, Yanpu [2 ]
Zhang, Shaowei [4 ]
Ren, Cong [5 ]
Jing, Yifu [2 ,3 ]
Cheng, Fupeng
Wu, Qixing
Lund, Peter [3 ]
Fan, Liangdong [2 ]
机构
[1] Xidian Univ, Acad Adv Interdisciplinary Res, Interdisciplinary Res Ctr Smart Sensors, Xian 710071, Shaanxi, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Guangdong, Peoples R China
[3] Aalto Univ, Dept Appl Phys, New Energy Technol Grp, Sch Sci, FI-00076 Aalto, Finland
[4] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[5] Xidian Univ, Sch Adv Mat & Nanotechnol, Dept Appl Chem, Xian 710071, Shaanxi, Peoples R China
关键词
solid oxide cell; CO-CO2 reversible conversion; epitaxial growth; perovskite oxides; alloy nanoparticles; SITU EXSOLVED CO; LAYERED PEROVSKITE; CARBON DEPOSITION; ANODE MATERIAL; CATHODE; SR2FE1.5MO0.5O6-DELTA; TECHNOLOGIES; REDUCTION; KINETICS; CATALYST;
D O I
10.1021/acsami.1c23548
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Reversible solid oxide cells (RSOCs) can efficiently render the mutual conversion between electricity and chemicals, for example, electrolyzing CO2 to CO under a solid oxide electrolysis cell (SOEC) mode and oxidizing CO to CO2 under a solid oxide fuel cell (SOFC) mode. Nevertheless, the development of RSOCs is still hindered, owing to the lack of catalytically active and carbon-tolerant fuel electrodes. For improving mutual CO-CO2 conversion kinetics in RSOCs, here, we demonstrate a high-performing and durable fuel electrode consisting of redox-stable Sr-2(Fe, Mo)(2)O6-delta perovskite oxide and epitaxially endogenous NiFe alloy nanoparticles. The electrochemical impedance spectrum (EIS) and distribution of relaxation time (DRT) analyses reveal that surface/interface oxygen exchange kinetics and the CO/CO2 activation process are both greatly accelerated. The assembled single cell produces a maximum power density (MPD) of 443 mW cm(-2) at 800 degrees C under the SOFC mode, with the corresponding CO oxidation rate of 5.524 mL min(-1) cm(-2). On the other hand, a current density of -0.877 A cm(-2) is achieved at 1.46 V under the SOEC mode, equivalent to a CO2 reduction rate of 6.108 mL min cm(-2). Furthermore, reliable reversible conversion of CO-CO2 is proven with no performance degradation in 20 cycles under SOEC (1.3 V) and SOFC (0.6 V) modes. Therefore, our work provides an alternative way for designing highly active and durable fuel electrodes for RSOC applications.
引用
收藏
页码:9138 / 9150
页数:13
相关论文
共 62 条
  • [1] CO/CO2 Study of High Performance La0.3Sr0.7Fe0.7Cr0.3O3- Reversible SOFC Electrodes
    Addo, P. K.
    Molero-Sanchez, B.
    Chen, M.
    Paulson, S.
    Birss, V.
    [J]. FUEL CELLS, 2015, 15 (05) : 689 - 696
  • [2] Electrode kinetics of porous mixed-conducting oxygen electrodes
    Adler, SB
    Lane, JA
    Steele, BCH
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) : 3554 - 3564
  • [3] Limitations of charge-transfer models for mixed-conducting oxygen electrodes
    Adler, SB
    [J]. SOLID STATE IONICS, 2000, 135 (1-4) : 603 - 612
  • [4] Insight into high electrochemical activity of reduced La0.3Sr0.7Fe0.7Ti0.3O3 electrode for high temperature CO2 electrolysis
    Cao, Zhiqun
    Wang, Zhihong
    Li, Fengjiao
    Maliutina, Kristina
    Wu, Qixing
    He, Chuanxin
    Lv, Zhe
    Fan, Liangdong
    [J]. ELECTROCHIMICA ACTA, 2020, 332
  • [5] Nanoengineering of solid oxide electrochemical cell technologies: An outlook
    Carneiro, Juliana
    Nikolla, Eranda
    [J]. NANO RESEARCH, 2019, 12 (09) : 2081 - 2092
  • [6] Tailoring SOFC Electrode Microstructures for Improved Performance
    Connor, Paul A.
    Yue, Xiangling
    Savaniu, Cristian D.
    Price, Robert
    Triantafyllou, Georgios
    Cassidy, Mark
    Kerherve, Gwilherm
    Payne, David J.
    Maher, Robert C.
    Cohen, Lesley F.
    Tomov, Rumen I.
    Glowacki, Bartek A.
    Kumar, Ramachandran Vasant
    Irvine, John T. S.
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (23)
  • [7] Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells
    Ebbesen, Sune Dalgaard
    Mogensen, Mogens
    [J]. JOURNAL OF POWER SOURCES, 2009, 193 (01) : 349 - 358
  • [8] Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities
    Fan, Liangdong
    Zhu, Bin
    Su, Pei-Chen
    He, Chuanxin
    [J]. NANO ENERGY, 2018, 45 : 148 - 176
  • [9] Fabrication and characterization of microtubular solid oxide cell supported with nanostructured mixed conducting perovskite fuel electrode
    Gan, Yun
    Ren, Chunlei
    Lee, Myongjin
    Yang, Chunyang
    Xue, Xingjian
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2018, 22 (09) : 2929 - 2943
  • [10] From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells
    Gao, Yang
    Chen, Dengjie
    Saccoccio, Mattia
    Lu, Ziheng
    Ciucci, Francesco
    [J]. NANO ENERGY, 2016, 27 : 499 - 508