Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming

被引:795
作者
Folmes, Clifford D. L. [1 ,2 ]
Nelson, Timothy J. [1 ,2 ,3 ,4 ]
Martinez-Fernandez, Almudena [1 ,2 ]
Arrell, D. Kent [1 ,2 ]
Lindor, Jelena Zlatkovic [1 ,2 ]
Dzeja, Petras P. [1 ,2 ]
Ikeda, Yasuhiro [5 ]
Perez-Terzic, Carmen [1 ,2 ,6 ]
Terzic, Andre [1 ,2 ,7 ,8 ]
机构
[1] Mayo Clin, Dept Med, Div Cardiovasc Dis, Ctr Regenerat Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Med, Div Cardiovasc Dis, Marriott Heart Dis Res Program, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Med, Transplant Ctr, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Med, Div Gen Internal Med, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Mol Med, Rochester, MN 55905 USA
[6] Mayo Clin, Dept Phys Med & Rehabil, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Mol Pharmacol & Expt Therapeut, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Med Genet, Rochester, MN 55905 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
STEM-CELLS; DIFFERENTIATION; METABOLISM; EXPRESSION; INDUCTION; BIOLOGY; CANCER; FUELS;
D O I
10.1016/j.cmet.2011.06.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The bioenergetics of somatic dedifferentiation into induced pluripotent stem cells remains largely unknown. Here, sternness factor-mediated nuclear reprogramming reverted mitochondria! networks into cristae-poor structures. Metabolomic footprinting and fingerprinting distinguished derived pluripotent progeny from parental fibroblasts according to elevated glucose utilization and production of glycolytic end products. Temporal sampling demonstrated glycolytic gene potentiation prior to induction of pluripotent markers. Functional metamorphosis of somatic oxidative phosphorylation into acquired pluripotent glycolytic metabolism conformed to an embryonic-like archetype. Stimulation of glycolysis promoted, while blockade of glycolytic enzyme activity blunted, reprogramming efficiency. Metaboproteomics resolved upregulated glycolytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination. Thus, the energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 43 条
[1]   Human Induced Pluripotent Stem Cell Lines Show Stress Defense Mechanisms and Mitochondrial Regulation Similar to Those of Human Embryonic Stem Cells [J].
Armstrong, Lyle ;
Tilgner, Katarzyna ;
Saretzki, Gabriele ;
Atkinson, Stuart P. ;
Stojkovic, Miodrag ;
Moreno, Ruben ;
Przyborski, Stefan ;
Lako, Majlinda .
STEM CELLS, 2010, 28 (04) :661-673
[2]   Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts [J].
Beckonert, Olaf ;
Keun, Hector C. ;
Ebbels, Timothy M. D. ;
Bundy, Jacob G. ;
Holmes, Elaine ;
Lindon, John C. ;
Nicholson, Jeremy K. .
NATURE PROTOCOLS, 2007, 2 (11) :2692-2703
[3]   Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines [J].
Bock, Christoph ;
Kiskinis, Evangelos ;
Verstappen, Griet ;
Gu, Hongcang ;
Boulting, Gabriella ;
Smith, Zachary D. ;
Ziller, Michael ;
Croft, Gist F. ;
Amoroso, Mackenzie W. ;
Oakley, Derek H. ;
Gnirke, Andreas ;
Eggan, Kevin ;
Meissner, Alexander .
CELL, 2011, 144 (03) :439-452
[4]   Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells [J].
Cho, Young Min ;
Kwon, Sujin ;
Pak, Youngmi Kim ;
Seol, Hye Won ;
Choi, Young Min ;
Park, Do Joon ;
Park, Kyong Soo ;
Lee, Hong Kyu .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 348 (04) :1472-1478
[5]   Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells [J].
Chung S. ;
Dzeja P.P. ;
Faustino R.S. ;
Perez-Terzic C. ;
Behfar A. ;
Terzic A. .
Nature Clinical Practice Cardiovascular Medicine, 2007, 4 (Suppl 1) :S60-S67
[6]   Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation [J].
Chung, Susan ;
Arrell, D. Kent ;
Faustino, Randolph S. ;
Terzic, Andre ;
Dzeja, Petras P. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 48 (04) :725-734
[7]   Developmental Restructuring of the Creatine Kinase System Integrates Mitochondrial Energetics with Stem Cell Cardiogenesis [J].
Chung, Susan ;
Dzeja, Petras P. ;
Faustino, Randolph S. ;
Terzic, Andre .
MITOCHONDRIA AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISORDERS, 2008, 1147 :254-263
[8]   The interplay between MYC and HIF in the Warburg effect [J].
Dang, C. V. .
ONCOGENES MEET METABOLISM: FROM DEREGULATED GENES TO A BROADER UNDERSTANDING OF TUMOUR PHYSIOLOGY, 2008, 4 :35-53
[9]   The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation [J].
DeBerardinis, Ralph J. ;
Lum, Julian J. ;
Hatzivassiliou, Georgia ;
Thompson, Craig B. .
CELL METABOLISM, 2008, 7 (01) :11-20
[10]   Developmental Enhancement of Adenylate Kinase-AMPK Metabolic Signaling Axis Supports Stem Cell Cardiac Differentiation [J].
Dzeja, Petras P. ;
Chung, Susan ;
Faustino, Randolph S. ;
Behfar, Atta ;
Terzic, Andre .
PLOS ONE, 2011, 6 (04)