Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming

被引:780
作者
Folmes, Clifford D. L. [1 ,2 ]
Nelson, Timothy J. [1 ,2 ,3 ,4 ]
Martinez-Fernandez, Almudena [1 ,2 ]
Arrell, D. Kent [1 ,2 ]
Lindor, Jelena Zlatkovic [1 ,2 ]
Dzeja, Petras P. [1 ,2 ]
Ikeda, Yasuhiro [5 ]
Perez-Terzic, Carmen [1 ,2 ,6 ]
Terzic, Andre [1 ,2 ,7 ,8 ]
机构
[1] Mayo Clin, Dept Med, Div Cardiovasc Dis, Ctr Regenerat Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Med, Div Cardiovasc Dis, Marriott Heart Dis Res Program, Rochester, MN 55905 USA
[3] Mayo Clin, Dept Med, Transplant Ctr, Rochester, MN 55905 USA
[4] Mayo Clin, Dept Med, Div Gen Internal Med, Rochester, MN 55905 USA
[5] Mayo Clin, Dept Mol Med, Rochester, MN 55905 USA
[6] Mayo Clin, Dept Phys Med & Rehabil, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Mol Pharmacol & Expt Therapeut, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Med Genet, Rochester, MN 55905 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
STEM-CELLS; DIFFERENTIATION; METABOLISM; EXPRESSION; INDUCTION; BIOLOGY; CANCER; FUELS;
D O I
10.1016/j.cmet.2011.06.011
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The bioenergetics of somatic dedifferentiation into induced pluripotent stem cells remains largely unknown. Here, sternness factor-mediated nuclear reprogramming reverted mitochondria! networks into cristae-poor structures. Metabolomic footprinting and fingerprinting distinguished derived pluripotent progeny from parental fibroblasts according to elevated glucose utilization and production of glycolytic end products. Temporal sampling demonstrated glycolytic gene potentiation prior to induction of pluripotent markers. Functional metamorphosis of somatic oxidative phosphorylation into acquired pluripotent glycolytic metabolism conformed to an embryonic-like archetype. Stimulation of glycolysis promoted, while blockade of glycolytic enzyme activity blunted, reprogramming efficiency. Metaboproteomics resolved upregulated glycolytic enzymes and downregulated electron transport chain complex I subunits underlying cell fate determination. Thus, the energetic infrastructure of somatic cells transitions into a required glycolytic metabotype to fuel induction of pluripotency.
引用
收藏
页码:264 / 271
页数:8
相关论文
共 43 条
  • [1] Human Induced Pluripotent Stem Cell Lines Show Stress Defense Mechanisms and Mitochondrial Regulation Similar to Those of Human Embryonic Stem Cells
    Armstrong, Lyle
    Tilgner, Katarzyna
    Saretzki, Gabriele
    Atkinson, Stuart P.
    Stojkovic, Miodrag
    Moreno, Ruben
    Przyborski, Stefan
    Lako, Majlinda
    [J]. STEM CELLS, 2010, 28 (04) : 661 - 673
  • [2] Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts
    Beckonert, Olaf
    Keun, Hector C.
    Ebbels, Timothy M. D.
    Bundy, Jacob G.
    Holmes, Elaine
    Lindon, John C.
    Nicholson, Jeremy K.
    [J]. NATURE PROTOCOLS, 2007, 2 (11) : 2692 - 2703
  • [3] Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines
    Bock, Christoph
    Kiskinis, Evangelos
    Verstappen, Griet
    Gu, Hongcang
    Boulting, Gabriella
    Smith, Zachary D.
    Ziller, Michael
    Croft, Gist F.
    Amoroso, Mackenzie W.
    Oakley, Derek H.
    Gnirke, Andreas
    Eggan, Kevin
    Meissner, Alexander
    [J]. CELL, 2011, 144 (03) : 439 - 452
  • [4] Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells
    Cho, Young Min
    Kwon, Sujin
    Pak, Youngmi Kim
    Seol, Hye Won
    Choi, Young Min
    Park, Do Joon
    Park, Kyong Soo
    Lee, Hong Kyu
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 348 (04) : 1472 - 1478
  • [5] Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
    Chung S.
    Dzeja P.P.
    Faustino R.S.
    Perez-Terzic C.
    Behfar A.
    Terzic A.
    [J]. Nature Clinical Practice Cardiovascular Medicine, 2007, 4 (Suppl 1): : S60 - S67
  • [6] Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation
    Chung, Susan
    Arrell, D. Kent
    Faustino, Randolph S.
    Terzic, Andre
    Dzeja, Petras P.
    [J]. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2010, 48 (04) : 725 - 734
  • [7] Developmental Restructuring of the Creatine Kinase System Integrates Mitochondrial Energetics with Stem Cell Cardiogenesis
    Chung, Susan
    Dzeja, Petras P.
    Faustino, Randolph S.
    Terzic, Andre
    [J]. MITOCHONDRIA AND OXIDATIVE STRESS IN NEURODEGENERATIVE DISORDERS, 2008, 1147 : 254 - 263
  • [8] The interplay between MYC and HIF in the Warburg effect
    Dang, C. V.
    [J]. ONCOGENES MEET METABOLISM: FROM DEREGULATED GENES TO A BROADER UNDERSTANDING OF TUMOUR PHYSIOLOGY, 2008, 4 : 35 - 53
  • [9] The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    DeBerardinis, Ralph J.
    Lum, Julian J.
    Hatzivassiliou, Georgia
    Thompson, Craig B.
    [J]. CELL METABOLISM, 2008, 7 (01) : 11 - 20
  • [10] Developmental Enhancement of Adenylate Kinase-AMPK Metabolic Signaling Axis Supports Stem Cell Cardiac Differentiation
    Dzeja, Petras P.
    Chung, Susan
    Faustino, Randolph S.
    Behfar, Atta
    Terzic, Andre
    [J]. PLOS ONE, 2011, 6 (04):