Finite element modeling of borehole heat exchanger systems Part 1. Fundamentals

被引:147
作者
Diersch, H. -J. G. [1 ]
Bauer, D. [2 ]
Heidemann, W. [2 ]
Ruehaak, W. [1 ]
Schaetzl, P. [1 ]
机构
[1] DHI WASY GmbH, GMC, D-12526 Berlin, Germany
[2] Univ Stuttgart, Inst Thermodynam & Thermal Engn ITW, D-70550 Stuttgart, Germany
关键词
Finite elements; Borehole heat exchanger; Thermal resistances; Local problem; Static condensation; FORMULATION;
D O I
10.1016/j.cageo.2010.08.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1122 / 1135
页数:14
相关论文
共 15 条
[1]   Efficient finite element formulation for geothermal heating systems. Part II: Transient [J].
Al-Khoury, R. ;
Bonnier, P. G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (05) :725-745
[2]   Efficient finite element formulation for geothermal heating systems. Part I: Steady state [J].
Al-Khoury, R ;
Bonnier, PG ;
Brinkgreve, RBJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 63 (07) :988-1013
[3]  
[Anonymous], 1994, ITERATIVE SOLUTION M, DOI DOI 10.1017/CBO9780511624100
[4]  
AUSTIN WA, 2000, ASHRAE T, V106, P356
[5]   Thermal resistance and capacity models for borehole heat exchangers [J].
Bauer, D. ;
Heidemann, W. ;
Mueller-Steinhagen, H. ;
Diersch, H. -J. G. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (04) :312-320
[6]  
*DHI WASY, 2010, FEFLOW FIN EL SUBS F
[7]   Variable-density flow and transport in porous media: approaches and challenges [J].
Diersch, HJG ;
Kolditz, O .
ADVANCES IN WATER RESOURCES, 2002, 25 (8-12) :899-944
[8]  
ESKILSON P, 1988, NUMER HEAT TRANSFER, V13, P149, DOI 10.1080/10407788808913609
[9]  
He M., 2009, P EFFST 11 INT C THE
[10]   A review of methods to evaluate borehole thermal resistances in geothermal heat-pump systems [J].
Lamarche, Louis ;
Kajl, Stanislaw ;
Beauchamp, Benoit .
GEOTHERMICS, 2010, 39 (02) :187-200