Anatomy-Aware Inference of the 3D Standing Spine Posture from 2D Radiographs

被引:4
作者
Bayat, Amirhossein [1 ,2 ]
Pace, Danielle F. [3 ,4 ]
Sekuboyina, Anjany [1 ,2 ,5 ]
Payer, Christian [6 ]
Stern, Darko [6 ]
Urschler, Martin [7 ]
Kirschke, Jan S. [2 ]
Menze, Bjoern H. [1 ,5 ]
机构
[1] Tech Univ Munich, Dept Comp Sci, D-85748 Garching, Germany
[2] Klinikum Rech Del Isar, Dept Neuroradiol, D-81675 Munich, Germany
[3] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Harvard Med Sch, Massachusetts Gen Hosp, AA Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[5] Univ Zurich, Dept Quantitat Biomed, CH-8006 Zurich, Switzerland
[6] Graz Univ Technol, Inst Comp Graph & Vis, A-8010 Graz, Austria
[7] Univ Auckland, Sch Comp Sci, Auckland 1010, New Zealand
关键词
3D reconstruction; shape priors; neural networks; registration; template; IMAGE REGISTRATION; LOADS; KINEMATICS; MODEL;
D O I
10.3390/tomography8010039
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
An important factor for the development of spinal degeneration, pain and the outcome of spinal surgery is known to be the balance of the spine. It must be analyzed in an upright, standing position to ensure physiological loading conditions and visualize load-dependent deformations. Despite the complex 3D shape of the spine, this analysis is currently performed using 2D radiographs, as all frequently used 3D imaging techniques require the patient to be scanned in a prone position. To overcome this limitation, we propose a deep neural network to reconstruct the 3D spinal pose in an upright standing position, loaded naturally. Specifically, we propose a novel neural network architecture, which takes orthogonal 2D radiographs and infers the spine's 3D posture using vertebral shape priors. In this work, we define vertebral shape priors using an atlas and a spine shape prior, incorporating both into our proposed network architecture. We validate our architecture on digitally reconstructed radiographs, achieving a 3D reconstruction Dice of 0.95, indicating an almost perfect 2D-to-3D domain translation. Validating the reconstruction accuracy of a 3D standing spine on real data is infeasible due to the lack of a valid ground truth. Hence, we design a novel experiment for this purpose, using an orientation invariant distance metric, to evaluate our model's ability to synthesize full-3D, upright, and patient-specific spine models. We compare the synthesized spine shapes from clinical upright standing radiographs to the same patient's 3D spinal posture in the prone position from CT.
引用
收藏
页码:479 / 496
页数:18
相关论文
共 40 条
[1]   Obesity and spinal loads; a combined MR imaging and subject-specific modeling investigation [J].
Akhavanfar, M. H. ;
Kazemi, H. ;
Eskandari, A. H. ;
Arjmand, N. .
JOURNAL OF BIOMECHANICS, 2018, 70 :102-112
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Toward Automated 3D Spine Reconstruction from Biplanar Radiographs Using CNN for Statistical Spine Model Fitting [J].
Aubert, B. ;
Vazquez, C. ;
Cresson, T. ;
Parent, S. ;
de Guise, J. A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (12) :2796-2806
[4]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[5]   Effects of individual spine curvatures - a comparative study with the help of computer modelling [J].
Bauer, S. ;
Hausen, U. ;
Gruber, K. .
BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 :132-135
[6]  
Bayat A., P INT C MED IMAG COM, P775
[7]  
Bayat A., 2019, P INT WORKSH CHALL C, P39
[8]   Multi-Modality Vertebra Recognition in Arbitrary Views Using 3D Deformable Hierarchical Model [J].
Cai, Yunliang ;
Osman, Said ;
Sharma, Manas ;
Landis, Mark ;
Li, Shuo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (08) :1676-1693
[9]   3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch [J].
De Silva, T. ;
Uneri, A. ;
Ketcha, M. D. ;
Reaungamornrat, S. ;
Kleinszig, G. ;
Vogt, S. ;
Aygun, N. ;
Lo, S-F ;
Wolinsky, J-P ;
Siewerdsen, J. H. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (08) :3009-3025
[10]   Estimation of loads on human lumbar spine: A review of in vivo and computational model studies [J].
Dreischarf, Marcel ;
Shirazi-Adl, Aboulfazl ;
Arjmand, Navid ;
Rohlmann, Antonius ;
Schmidt, Hendrik .
JOURNAL OF BIOMECHANICS, 2016, 49 (06) :833-845