Fast generation of 4D PET-MR data from real dynamic MR acquisitions

被引:78
作者
Tsoumpas, C. [1 ]
Buerger, C. [1 ]
King, A. P. [1 ]
Mollet, P. [2 ]
Keereman, V. [2 ]
Vandenberghe, S. [2 ]
Schulz, V. [3 ]
Schleyer, P. [1 ]
Schaeffter, T. [1 ]
Marsden, P. K. [1 ]
机构
[1] Kings Coll London, Sch Med, Div Imaging Sci & Biomed Engn, London WC2R 2LS, England
[2] Univ Ghent, IBBT, B-9000 Ghent, Belgium
[3] Philips Res, Aachen, Germany
关键词
RESPIRATORY MOTION ESTIMATION; IMAGE-RECONSTRUCTION; HUMAN ANATOMY; SIMULATION; VALIDATION; ALGORITHM; SCANNER; SIMSET; PATH;
D O I
10.1088/0031-9155/56/20/005
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We have implemented and evaluated a framework for simulating simultaneous dynamic PET-MR data using the anatomic and dynamic information from real MR acquisitions. PET radiotracer distribution is simulated by assigning typical FDG uptake values to segmented MR images with manually inserted additional virtual lesions. PET projection data and images are simulated using analytic forward projections (including attenuation and Poisson statistics) implemented within the image reconstruction package STIR. PET image reconstructions are also performed with STIR. The simulation is validated with numerical simulation based on Monte Carlo (GATE) which uses more accurate physical modelling, but has 150x slower computation time compared to the analytic method for ten respiratory positions and is 7000x slower when performing multiple realizations. Results are validated in terms of region of interest mean values and coefficients of variation for 65 million coincidences including scattered events. Although some discrepancy is observed, agreement between the two different simulation methods is good given the statistical noise in the data. In particular, the percentage difference of the mean values is 3.1% for tissue, 17% for the lungs and 18% for a small lesion. The utility of the procedure is demonstrated by simulating realistic PET-MR datasets from multiple volunteers with different breathing patterns. The usefulness of the toolkit will be shown for performance investigations of the reconstruction, motion correction and attenuation correction algorithms for dynamic PET-MR data.
引用
收藏
页码:6597 / 6613
页数:17
相关论文
共 32 条
[1]   Monte Carlo simulation and scatter correction of the GE advance PET scanner with SimSET and geant4 [J].
Barret, O ;
Carpenter, TA ;
Clark, JC ;
Ansorge, RE ;
Fryer, TD .
PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (20) :4823-4840
[2]   Hierarchical adaptive local affine registration for fast and robust respiratory motion estimation [J].
Buerger, Christian ;
Schaeffter, Tobias ;
King, Andrew P. .
MEDICAL IMAGE ANALYSIS, 2011, 15 (04) :551-564
[3]  
Buvat I, 2002, Q J NUCL MED, V46, P48
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]   PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation [J].
Espana, S. ;
Herraiz, J. L. ;
Vicente, E. ;
Vaquero, J. J. ;
Desco, M. ;
Udias, J. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (06) :1723-1742
[6]   Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging [J].
Guerin, B. ;
Cho, S. ;
Chun, S. Y. ;
Zhu, X. ;
Alpert, N. M. ;
El Fakhri, G. ;
Reese, T. ;
Catana, C. .
MEDICAL PHYSICS, 2011, 38 (06) :3025-3038
[7]   Ultra fast symmetry and SIMD-based projection-backprojection (SSP) algorithm for 3-D PET image reconstruction [J].
Hong, I. K. ;
Chung, S. T. ;
Kim, H. K. ;
Kim, Y. B. ;
Son, Y. D. ;
Cho, Z. H. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (06) :789-803
[8]   Enhanced 3D PET OSEM reconstruction using inter-update Metz filtering [J].
Jacobson, M ;
Levkovitz, R ;
Ben-Tal, A ;
Thielemans, K ;
Spinks, T ;
Belluzzo, D ;
Pagani, E ;
Bettinardi, V ;
Gilardi, MC ;
Zverovich, A ;
Mitra, G .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (08) :2417-2439
[9]   GATE:: a simulation toolkit for PET and SPECT [J].
Jan, S ;
Santin, G ;
Strul, D ;
Staelens, S ;
Assié, K ;
Autret, D ;
Avner, S ;
Barbier, R ;
Bardiès, M ;
Bloomfield, PM ;
Brasse, D ;
Breton, V ;
Bruyndonckx, P ;
Buvat, I ;
Chatziioannou, AF ;
Choi, Y ;
Chung, YH ;
Comtat, C ;
Donnarieix, D ;
Ferrer, L ;
Glick, SJ ;
Groiselle, CJ ;
Guez, D ;
Honore, PF ;
Kerhoas-Cavata, S ;
Kirov, AS ;
Kohli, V ;
Koole, M ;
Krieguer, M ;
van der Laan, DJ ;
Lamare, F ;
Largeron, G ;
Lartizien, C ;
Lazaro, D ;
Maas, MC ;
Maigne, L ;
Mayet, F ;
Melot, F ;
Merheb, C ;
Pennacchio, E ;
Perez, J ;
Pietrzyk, U ;
Rannou, FR ;
Rey, M ;
Schaart, DR ;
Schmidtlein, CR ;
Simon, L ;
Song, TY ;
Vieira, JM ;
Visvikis, D .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (19) :4543-4561
[10]  
Keereman V, 2010, J NUCL MED, V51, P812, DOI 10.2967/jnumed.109.065425