Power Scaling for Collimated γ-Ray Beams Generated by Structured Laser-Irradiated Targets and Its Application to Two-Photon Pair Production

被引:56
作者
Wang, T. [1 ,2 ]
Ribeyre, X. [3 ]
Gong, Z. [4 ]
Jansen, O. [1 ]
d'Humieres, E. [3 ]
Stutman, D. [5 ,6 ]
Toncian, T. [7 ]
Arefiev, A. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[3] Univ Bordeaux, Ctr Lasers Intenses & Applicat, UMR 5107, CNRS,CEA, F-33405 Talence, France
[4] Univ Texas Austin, Ctr High Energy Dens Sci, Austin, TX 78712 USA
[5] Horia Hulubei Natl Inst Phys & Nucl Engn, Extreme Light Infrastruct Nucl Phys ELI NP, Bucharest 077125, Romania
[6] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[7] Helmholtz Zentrum Dresden Rossendorf eV, Inst Radiat Phys, D-01328 Dresden, Germany
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
INTENSITY; PLASMA; PULSE;
D O I
10.1103/PhysRevApplied.13.054024
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using three-dimensional kinetic simulations, we examine the emission of collimated gamma-ray beams from structured laser-irradiated targets with a prefilled cylindrical channel and its scaling with laser power (in the multi-PW range). The laser power is increased by increasing the laser energy and the size of the focal spot while keeping the peak intensity fixed at 5 x 10(22) W/cm(2). The channel radius is increased proportionally to accommodate the change in laser spot size. The efficiency of conversion of the laser energy into a beam of MeV-level gamma rays (with a 10 degrees opening angle) increases rapidly with the incident laser power P before it roughly saturates above P approximate to 4 PW. Detailed particle tracking reveals that the power scaling is a result of enhanced electron acceleration at higher laser powers. One application that directly benefits from such a strong scaling is pair production via two-photon collisions. We investigate two schemes for generating pairs through the linear Breit-Wheeler process: colliding two gamma-ray beams and colliding one gamma-ray beam with black-body radiation. The two scenarios project up to 10(4) and 10(5) pairs, respectively, for the gamma-ray beams generated at P = 4 PW. A comparison with a regime of laser-irradiated hollow channels corroborates the robustness of the setup with prefilled channels.
引用
收藏
页数:13
相关论文
共 60 条
  • [1] Contemporary particle-in-cell approach to laser-plasma modelling
    Arber, T. D.
    Bennett, K.
    Brady, C. S.
    Lawrence-Douglas, A.
    Ramsay, M. G.
    Sircombe, N. J.
    Gillies, P.
    Evans, R. G.
    Schmitz, H.
    Bell, A. R.
    Ridgers, C. P.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (11)
  • [2] Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas
    Arefiev, A. V.
    Khudik, V. N.
    Robinson, A. P. L.
    Shvets, G.
    Willingale, L.
    Schollmeier, M.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (05)
  • [3] Cryogenic permanent magnet and superconducting undulators
    Bahrdt, Johannes
    Gluskin, Efim
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 907 : 149 - 168
  • [4] Possibility of Prolific Pair Production with High-Power Lasers
    Bell, A. R.
    Kirk, John G.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (20)
  • [5] Nuclear resonance fluorescence excitations near 2 MeV in 235U and 239Pu
    Bertozzi, W.
    Caggiano, J. A.
    Hensley, W. K.
    Johnson, M. S.
    Korbly, S. E.
    Ledoux, R. J.
    McNabb, D. P.
    Norman, E. B.
    Park, W. H.
    Warren, G. A.
    [J]. PHYSICAL REVIEW C, 2008, 78 (04):
  • [6] Quantum Radiation Reaction in Laser-Electron-Beam Collisions
    Blackburn, T. G.
    Ridgers, C. P.
    Kirk, J. G.
    Bell, A. R.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (01)
  • [7] Collision of two light quanta
    Breit, G
    Wheeler, JA
    [J]. PHYSICAL REVIEW, 1934, 46 (12): : 1087 - 1091
  • [8] Generation of GeV protons from 1 PW laser interaction with near critical density targets
    Bulanov, Stepan S.
    Bychenkov, Valery Yu.
    Chvykov, Vladimir
    Kalinchenko, Galina
    Litzenberg, Dale William
    Matsuoka, Takeshi
    Thomas, Alexander G. R.
    Willingale, Louise
    Yanovsky, Victor
    Krushelnick, Karl
    Maksimchuk, Anatoly
    [J]. PHYSICS OF PLASMAS, 2010, 17 (04)
  • [9] Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction
    Chang, H. X.
    Qiao, B.
    Huang, T. W.
    Xu, Z.
    Zhou, C. T.
    Gu, Y. Q.
    Yan, X. Q.
    Zepf, M.
    He, X. T.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Petawatt and exawatt class lasers worldwide
    Danson, Colin N.
    Haefner, Constantin
    Bromage, Jake
    Butcher, Thomas
    Chanteloup, Jean-Christophe F.
    Chowdhury, Enam A.
    Galvanauskas, Almantas
    Gizzi, Leonida A.
    Hein, Joachim
    Hillier, David, I
    Hopps, Nicholas W.
    Kato, Yoshiaki
    Khazanov, Em A.
    Kodama, Ryosuke
    Korn, Georg
    Li, Ruxin
    Li, Yutong
    Limpert, Jens
    Ma, Jingui
    Nam, Chang Hee
    Neely, David
    Papadopoulos, Dimitrios
    Penman, Rory R.
    Qian, Liejia
    Rocca, Jorge J.
    Shaykin, Andrey A.
    Siders, Craig W.
    Spindloe, Christopher
    Szatmari, Sandor
    Trines, Raoul M. G. M.
    Zhu, Jianqiang
    Zhu, Ping
    Zuegel, Jonathan D.
    [J]. HIGH POWER LASER SCIENCE AND ENGINEERING, 2019, 7