Calibration of a scanning Joule expansion microscope (SJEM)

被引:9
作者
Cannaerts, M. [1 ]
Buntinx, D. [1 ]
Volodin, A. [1 ]
Van Haesendonck, C. [1 ]
机构
[1] Katholieke Univ Leuven, Lab Vaste Stoffys & Magnetisme, B-3001 Heverlee, Belgium
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2001年 / 72卷 / Suppl 1期
关键词
PACS: 61.16.Ch; 65.70+y; 66.10.Cb; 67.80.Gb;
D O I
10.1007/s003390100648
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Scanning thermal microscopy (SThM) is a scanning probe technique based on atomic force microscopy (AFM) enabling high-resolution topographical imaging together with visualization of the temperature distribution in the studied sample. For the thermal mapping, rather expensive, micro-fabricated cantilevers with integrated thermocouples have to be used. The spatial resolution is typically limited to 100 nm. Scanning Joule expansion microscopy (SJEM) uses an alternative approach to detect the temperature of the sample with a regular silicon cantilever and lock-in detection. By monitoring the thermal expansion of the sample (due to Joule heating), the local temperature can be monitored. The resolution of SJEM is comparable to that of contact AFM, which is an order of magnitude better than for SThM. Our research involves implementing a SJEM for the study of heating phenomena in mesoscopic structures prepared by electron beam lithography and lift-off techniques. In particular, we calibrated our SJEM in order to make quantitative temperature maps of the studied samples.
引用
收藏
页码:S67 / S70
页数:4
相关论文
共 14 条
[1]   Study of the hot spot of an in-plane gate transistor by scanning Joule expansion microscopy [J].
Bolte, J ;
Niebisch, F ;
Pelzl, J ;
Stelmaszyk, P ;
Wieck, AD .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (12) :6917-6922
[2]   Implementation and optimization of a scanning Joule expansion microscope for the study of small conducting gold wires [J].
Cannaerts, M ;
Seynaeve, E ;
Rens, G ;
Volodin, A ;
Van Haesendonck, C .
APPLIED SURFACE SCIENCE, 2000, 157 (04) :308-313
[3]   Localized thermal analysis using a miniaturized resistive probe [J].
Hammiche, A ;
Reading, M ;
Pollock, HM ;
Song, M ;
Hourston, DJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (12) :4268-4274
[4]  
HARTMANN J, 1997, J APPL PHYS, V81, P2699
[5]   Sensor nanofabrication, performance, and conduction mechanisms in scanning thermal microscopy [J].
Luo, K ;
Shi, Z ;
Varesi, J ;
Majumdar, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (02) :349-360
[6]   THERMAL IMAGING USING THE ATOMIC FORCE MICROSCOPE [J].
MAJUMDAR, A ;
CARREJO, JP ;
LAI, J .
APPLIED PHYSICS LETTERS, 1993, 62 (20) :2501-2503
[7]   Scanning thermal microscopy [J].
Majumdar, A .
ANNUAL REVIEW OF MATERIALS SCIENCE, 1999, 29 :505-585
[8]  
Müller-Hirsch W, 1999, J VAC SCI TECHNOL A, V17, P1205
[9]   SCANNING PROBE MICROSCOPY OF THERMAL-CONDUCTIVITY AND SUBSURFACE PROPERTIES [J].
NONNENMACHER, M ;
WICKRAMASINGHE, HK .
APPLIED PHYSICS LETTERS, 1992, 61 (02) :168-170
[10]   Thermal imaging of thin films by scanning thermal microscope [J].
Oesterschulze, E ;
Stopka, M ;
Ackermann, L ;
Scholz, W ;
Werner, S .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02) :832-837