Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water

被引:148
|
作者
Wu, Lian-Kui [1 ]
Wu, Hao [1 ]
Zhang, Hui-Bin [1 ]
Cao, Hua-Zhen [1 ]
Hou, Guang-Ya [1 ]
Tang, Yi-Ping [1 ]
Zheng, Guo-Qu [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Adsorption; Arsenic; Copper ferrite; Graphene oxide; Regeneration; ZERO-VALENT IRON; COPPER FERRITE; AQUEOUS-SOLUTION; ZEROVALENT IRON; BINARY OXIDE; MAGNETIC NANOPARTICLES; DRINKING-WATER; AS(V) REMOVAL; MIXED-OXIDE; ADSORPTION;
D O I
10.1016/j.cej.2017.11.096
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this work, graphene oxide (GO) and copper ferrite composite was synthesized on Fe-Ni foam via a one-step hydrothermal method. The foam substrate not only acts as holding material for GO and copper ferrite, but also makes this adsorbent convenient to recycle. The morphology and surface composition of the graphene oxide/copper ferrite foam (GCFF) were analyzed by scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Raman spectra. The adsorption behavior of As(III) and As(V) onto the GCFF was studied as a function of solution pH, temperature, contact time, initial concentrations, and competing ions. Results show this GCFF is an efficient adsorbent for arsenic with high adsorption capacities for both As(III) and As(V) owing to the synergistic effect of CuFe2O4 and GO. The maximum adsorption capacities for As(III) and As(V) are 51.64 and 124.69 mg g(-1), respectively. Adsorption isotherms study indicates a Langmuir model of adsorption. In addition, the GCFF also reveals good recyclability due to the unique foam structure and the adsorption capacity is almost not deteriorated after eight recycles. Column experiment suggests that 96% As(V) can be removed from water solution after 100 bed volume test.
引用
收藏
页码:1808 / 1819
页数:12
相关论文
共 50 条
  • [1] Sepiolite/CuFe2O4 Composite: a Magnetic Absorbent for Removal of Contaminants from Water
    Huang, Yang
    Feng, Qiming
    Wang, Weiqing
    MATERIALS AND DESIGN, PTS 1-3, 2011, 284-286 : 114 - 119
  • [2] Rapid and efficient removal of naproxen from water by CuFe2O4 with peroxymonosulfate
    Rui Bai
    Yong Xiao
    Weifu Yan
    Siqi Wang
    Rui Ding
    Fan Yang
    Junpeng Li
    Xiaoquan Lu
    Feng Zhao
    Environmental Science and Pollution Research, 2020, 27 : 21542 - 21551
  • [3] Rapid and efficient removal of naproxen from water by CuFe2O4 with peroxymonosulfate
    Bai, Rui
    Xiao, Yong
    Yan, Weifu
    Wang, Siqi
    Ding, Rui
    Yang, Fan
    Li, Junpeng
    Lu, Xiaoquan
    Zhao, Feng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (17) : 21542 - 21551
  • [4] Nanostructured CuFe2O4 and CuFe2O4/reduced graphene oxide composites: structural and magnetic studies
    Kotsyubynsky, V. O.
    Zapukhlyak, R., I
    Boychuk, V. M.
    Hodlevska, M. A.
    Yaremiy, I. P.
    Bandura, Kh, V
    Kachmar, A., I
    Fedorchenko, S., V
    Hodlevskyi, M. A.
    FUNCTIONAL MATERIALS, 2021, 28 (01): : 42 - 48
  • [5] Electrophysical and Morphological Properties of a Hydrothermally Synthesized CuFe2O4 and CuFe2O4 / Reduced Graphene Oxide Composite
    Kotsyubynsky, V. O.
    Boychuk, V. M.
    Zapukhlyak, R., I
    Hodlevskyi, M. A.
    Budzulyak, I. M.
    Kachmar, A., I
    Hodlevska, M. A.
    Turovska, L., V
    PHYSICS AND CHEMISTRY OF SOLID STATE, 2021, 22 (02): : 372 - 379
  • [6] Magnetic luffa/graphene/CuFe2O4 sponge for efficient oil/water separation
    Liu, Zhuang
    Gao, Bo
    Zhao, Peng
    Fu, Haiyang
    Kamali, Ali Reza
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 337
  • [7] Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption
    Wei, Yuanfeng
    Liu, Hui
    Liu, Chengbin
    Luo, Shenglian
    Liu, Yutang
    Yu, Xingwen
    Ma, Jianhong
    Yin, Kai
    Feng, Haopeng
    WATER RESEARCH, 2019, 150 : 182 - 190
  • [8] Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation
    Othman, Israa
    Abu Haija, Mohammad
    Ismail, Issam
    Zain, Jerina Hisham
    Banat, Fawzi
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 238
  • [9] Graphene-Supported Spinel CuFe2O4 Composites: Novel Adsorbents for Arsenic Removal in Aqueous Media
    La, Duong Duc
    Tuan Anh Nguyen
    Jones, Lathe A.
    Bhosale, Sheshanath V.
    SENSORS, 2017, 17 (06)
  • [10] Removal of atorvastatin in water mediated by CuFe2O4 activated peroxymonosulfate
    Miao, Dong
    Peng, Jianbiao
    Wang, Mengjie
    Shao, Shuai
    Wang, Lianhong
    Gao, Shixiang
    CHEMICAL ENGINEERING JOURNAL, 2018, 346 : 1 - 10