FINITE ELEMENT APPROXIMATION OF THE MODIFIED MAXWELL'S STEKLOFF EIGENVALUES

被引:5
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Wu, Xinming [3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Stekloff eigenvalue; Maxwell's equation; finite element method; tangential trace; INTEGRAL-EQUATION; REGULARITY; TRACES;
D O I
10.1137/20M1328889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified Maxwell's Stekloff eigenvalue problem arises recently from the inverse electromagnetic scattering theory for inhomogeneous media. This paper contains a rigorous analysis of both the eigenvalue problem and the associated source problem on Lipschitz polyhedra. A new finite element method is proposed to compute Stekloff eigenvalues. By applying the Babuska-Osborn theory, we prove an error estimate without additional regularity assumptions. Numerical results are presented for validation.
引用
收藏
页码:2430 / 2448
页数:19
相关论文
共 50 条
  • [41] An Adaptive P1 Finite Element Method for Two-Dimensional Maxwell’s Equations
    S. C. Brenner
    J. Gedicke
    L.-Y. Sung
    Journal of Scientific Computing, 2013, 55 : 738 - 754
  • [42] Developing and Analyzing New Unconditionally Stable Finite Element Schemes for Maxwell's Equations in Complex Media
    Huang, Yunqing
    Chen, Meng
    Li, Jichun
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 86 (03)
  • [43] Finite element approximation of unique continuation of functions with finite dimensional trace
    Burman, Erik
    Oksanen, Lauri
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2024, 34 (10) : 1809 - 1824
  • [44] Variational approximation of Maxwell's equations in biperiodic structures
    Bao, G
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (02) : 364 - 381
  • [45] Developing and Analyzing New Unconditionally Stable Finite Element Schemes for Maxwell’s Equations in Complex Media
    Yunqing Huang
    Meng Chen
    Jichun Li
    Journal of Scientific Computing, 2021, 86
  • [46] Geometric finite element discretization of Maxwell equations in primal and dual spaces
    He, B
    Teixeira, FL
    PHYSICS LETTERS A, 2006, 349 (1-4) : 1 - 14
  • [47] ON THE FINITE ELEMENT APPROXIMATION OF p-STOKES SYSTEMS
    Belenki, L.
    Berselli, L. C.
    Diening, L.
    Ruzicka, M.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 373 - 397
  • [48] ANALYSIS OF THE FINITE-ELEMENT APPROXIMATION OF MICROSTRUCTURE IN MICROMAGNETICS
    LUSKIN, M
    MA, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) : 320 - 331
  • [49] Finite element approximation for the viscoelastic fluid motion problem
    He, YN
    Lin, YP
    Shen, SSP
    Sun, WW
    Tait, R
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 201 - 222
  • [50] FINITE ELEMENT APPROXIMATION OF NONLOCAL DYNAMIC FRACTURE MODELS
    Jha, P. K.
    Lipton, R.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1675 - 1710