FINITE ELEMENT APPROXIMATION OF THE MODIFIED MAXWELL'S STEKLOFF EIGENVALUES

被引:5
|
作者
Gong, Bo [1 ]
Sun, Jiguang [2 ]
Wu, Xinming [3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA
[3] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
基金
中国博士后科学基金; 国家重点研发计划;
关键词
Stekloff eigenvalue; Maxwell's equation; finite element method; tangential trace; INTEGRAL-EQUATION; REGULARITY; TRACES;
D O I
10.1137/20M1328889
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified Maxwell's Stekloff eigenvalue problem arises recently from the inverse electromagnetic scattering theory for inhomogeneous media. This paper contains a rigorous analysis of both the eigenvalue problem and the associated source problem on Lipschitz polyhedra. A new finite element method is proposed to compute Stekloff eigenvalues. By applying the Babuska-Osborn theory, we prove an error estimate without additional regularity assumptions. Numerical results are presented for validation.
引用
收藏
页码:2430 / 2448
页数:19
相关论文
共 50 条
  • [21] Finite element approximation for TV regularization
    Yao, Chang Hui
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2008, 5 (03) : 516 - 526
  • [22] Finite element study of time-dependent Maxwell's equations in dispersive media
    Li, Jichun
    Chen, Yitung
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (05) : 1203 - 1221
  • [23] Finite Element Approximation of the Hardy Constant
    Della Pietra, Francesco
    Fantuzzi, Giovanni
    Ignat, Liviu I.
    Masiello, Alba Lia
    Paoli, Gloria
    Zuazua, Enrique
    JOURNAL OF CONVEX ANALYSIS, 2024, 31 (02) : 497 - 523
  • [24] Finite element approximation of the Einstein tensor
    Gawlik, Evan S.
    Neunteufel, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2025,
  • [25] FREQUENCY-EXPLICIT A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT DISCRETIZATIONS OF MAXWELL'S EQUATIONS
    Chaumont-Frelet, Theophile
    Vega, Patrick
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (04) : 1774 - 1798
  • [26] DEVELOPING FINITE ELEMENT METHODS FOR MAXWELL'S EQUATIONS IN A COLE-COLE DISPERSIVE MEDIUM
    Li, Jichun
    Huang, Yunqing
    Lin, Yanping
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06) : 3153 - 3174
  • [27] An Adaptive P 1 Finite Element Method for Two-Dimensional Maxwell's Equations
    Brenner, S. C.
    Gedicke, J.
    Sung, L. -Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 55 (03) : 738 - 754
  • [28] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell’s equations
    Zhijie Du
    Huoyuan Duan
    BIT Numerical Mathematics, 2023, 63
  • [29] A stabilized finite element method on nonaffine grids for time-harmonic Maxwell's equations
    Du, Zhijie
    Duan, Huoyuan
    BIT NUMERICAL MATHEMATICS, 2023, 63 (04)
  • [30] Finite Element Analysis of Maxwell's Equations in Dispersive Lossy Bi-Isotropic Media
    Huang, Yunqing
    Li, Jichun
    Lin, Yanping
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2013, 5 (04) : 494 - 509