The existence and uniqueness of standard static splitting

被引:12
作者
Aledo, Juan A. [1 ]
Romero, Alfonso [1 ]
Rubio, Rafael M. [1 ]
机构
[1] Univ Castilla La Mancha, Dept Matemat, ESI Informat, Albacete 02071, Spain
关键词
static spacetime; standard static splitting; spacelike hypersurface; volume; Dirichlet problem;
D O I
10.1088/0264-9381/32/10/105004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
New techniques are introduced to study the existence and uniqueness of the static standard splitting of a static spacetime, and as a consequence, several results are provided in the field of geometric analysis. In particular, we obtain a rigidity result for compact spacelike hypersurfaces with a boundary, we solve a Dirichlet problem for the non-linear elliptic maximal hypersurface equation in a standard static spacetime, and finally we provide an upper bound for the first nontrivial eigenvalue of the Laplacian operator for a compact spacelike surface in certain standard static spacetimes.
引用
收藏
页数:9
相关论文
共 11 条
[1]   Spacelike hypersurfaces of constant mean curvature in certain spacetimes [J].
Alias, LJ ;
Romero, A ;
Sanchez, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) :655-661
[2]  
[Anonymous], GRAD TEXTS MATH
[3]   A note on static metrics [J].
Bartnik, R ;
Tod, P .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) :569-571
[4]  
Dillen F, 2011, BALK J GEOM APPL, V16, P35
[5]  
do Carmo M.P., 1976, Math. Theory Appl.
[6]  
HERSCH J, 1970, CR ACAD SCI A MATH, V270, P1645
[7]   Trapped surfaces and symmetries [J].
Mars, M ;
Senovilla, JMM .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (24) :L293-L300
[8]  
ONeill B., 1983, Semi-Riemannian geometry with applications to relativity
[9]  
Sachs R.K., 1977, GRAD TEXTS MATH, V48
[10]   On the geometry of static spacetimes [J].
Sanchez, Miguel .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E455-E463