Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process

被引:230
|
作者
Li, Li [1 ,2 ]
Chen, Renjie [1 ,2 ]
Sun, Feng [1 ]
Wu, Feng [1 ,2 ]
Liu, Jianrui [1 ]
机构
[1] Beijing Inst Technol, Sch Chem Engn & Environm, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
[2] Natl Dev Ctr High Technol Green Mat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Spent lithium ion batteries; Regeneration; Electrochemical-deposition; Lithium cobalt oxide; SECONDARY BATTERIES; COBALT; RECOVERY; TECHNOLOGIES; LIXCOO2; METALS;
D O I
10.1016/j.hydromet.2011.04.013
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
A new process is described for recovering and regenerating lithium cobalt oxide from spent lithium-ion batteries (LIBs) by a combination of dismantling, detachment with N-methylpyrrolidone (NMP), acid leaching and re-synthesis of LiCoO2 from the leach liquor as a cathode active material. The leach liquor, obtained from spent LIBs by using a nitric acid leaching solution, is used as electrolyte to regenerate LiCoO2 crystals on nickel plate at constant current in a single synthetic step using electrochemical deposition technology. The crystal structure and surface morphology of regenerated LiCoO2 were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. LiCoO2 phase with preferred (104) orientation was electro-deposited on nickel substrate at current density 1 mA cm(-2) for 20 h, and found to have good characteristics as a cathode active material in terms of charge and discharge capacity, and cycling performance. The particle size and layer thickness of the regenerated LiCoO2 crystalline powder were 0.5 pm and 0.2 mm, respectively. The initial charge and discharge capacity were 130.8 and 127.2 mAh g(-1), respectively. After 30 cycles, the capacity had decreased by less than 4% compared with the first cycle. This process involves simple equipment and could be feasible for recycling LIBs in large scale. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 50 条
  • [1] Preparation of LiCoO2 from spent lithium-ion batteries
    Lee, CK
    Rhee, KI
    JOURNAL OF POWER SOURCES, 2002, 109 (01) : 17 - 21
  • [2] Preparation of LiCoO2 from spent lithium-ion batteries
    谷芳
    李俊生
    哈尔滨商业大学学报(自然科学版), 2010, (03) : 281 - 284
  • [3] Preparation of LiCoO2 cathode materials from spent lithium-ion batteries
    Li, Jiangang
    Zhao, Rusong
    He, Xiangming
    Liu, Huachen
    IONICS, 2009, 15 (01) : 111 - 113
  • [4] Recycling of LiCoO2 cathode materials from spent lithium ion batteries
    Tong, Dongge
    Lai, Qiongyu
    Ji, Xiaoyang
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2005, 56 (10): : 1967 - 1970
  • [5] Preparation of LiCoO2 from Cathode Materials of Spent Lithium Ion Batteries
    Fang, Gu
    Qian, Nie
    ENVIRONMENTAL BIOTECHNOLOGY AND MATERIALS ENGINEERING, PTS 1-3, 2011, 183-185 : 1553 - 1557
  • [6] Leaching LiCoO2 from spent lithium-ion batteries by electrochemical reduction
    Chang, Wei
    Man, Rui-Lin
    Yin, Xiao-Ying
    Zhang, Jian
    Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals, 2014, 24 (03): : 787 - 792
  • [7] Preparation of LiCoO2 cathode materials from spent lithium–ion batteries
    Jiangang Li
    Rusong Zhao
    Xiangming He
    Huachen Liu
    Ionics, 2009, 15 : 111 - 113
  • [8] Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries
    LI Li1
    2 National Development Center for High Technology Green Materials
    Science Bulletin, 2012, (32) : 4188 - 4194
  • [9] Preparation and electrochemical properties of re-synthesized LiCoO2 from spent lithium-ion batteries
    Li Li
    Chen RenJie
    Zhang XiaoXiao
    Wu Feng
    Ge Jing
    Xie Man
    CHINESE SCIENCE BULLETIN, 2012, 57 (32): : 4188 - 4194
  • [10] Recyclable deep eutectic solvents for recycling LiCoO2 from spent lithium-ion batteries with high selectivity
    Zhang, Yaozhi
    Wang, Fang
    Zhang, Wanxiang
    Ren, Shuhang
    Hou, Yucui
    Wu, Weize
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330