HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA LOCAL LOW-RANK AND SPARSE REPRESENTATIONS

被引:0
|
作者
Dian, Renwei [1 ,2 ]
Li, Shutao [1 ]
Fang, Leyuan [1 ]
Bioucas-Dias, Jose [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha, Hunan, Peoples R China
[2] Univ Lisbon, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
关键词
Hyperspectral image super-resolution; low rank; superpixels; FORMULATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remotely sensed hyperspectral images (HSIs) usually have high spectral resolution but low spatial resolution. A way to increase the spatial resolution of HSIs is to solve a fusion inverse problem, which fuses a low spatial resolution HSI (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) of the same scene. In this paper, we propose a novel HSI super-resolution approach (called LRSR), which formulates the fusion problem as the estimation of a spectral dictionary from the LR-HSI and the respective regression coefficients from both images. The regression coefficients are estimated by formulating a variational regularization problem which promotes local (in the spatial sense) low-rank and sparse regression coefficients. The local regions, where the spectral vectors are low-rank, are estimated by segmenting the HR-MSI. The formulated convex optimization is solved with SALSA. Experiments provide evidence that LRSR is competitive with respect to the state-of-the-art methods.
引用
收藏
页码:4003 / 4006
页数:4
相关论文
共 50 条
  • [21] COUPLED TENSOR LOW-RANK MULTILINEAR APPROXIMATION FOR HYPERSPECTRAL SUPER-RESOLUTION
    Prevost, C.
    Usevich, K.
    Comon, P.
    Brie, D.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5536 - 5540
  • [22] Low-Rank Tensor Tucker Decomposition for Hyperspectral Images Super-Resolution
    Jia, Huidi
    Guo, Siyu
    Li, Zhenyu
    Chen, Xi'ai
    Han, Zhi
    Tang, Yandong
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2022), PT II, 2022, 13456 : 502 - 512
  • [23] Low-Rank Neighbor Embedding for Single Image Super-Resolution
    Chen, Xiaoxuan
    Qi, Chun
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (01) : 79 - 82
  • [24] UHD Video Super-Resolution using Low-Rank and Sparse Decomposition
    Ebadi, Salehe Erfanian
    Ones, Valia Guerra
    Izquierdo, Ebroul
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 1889 - 1897
  • [25] LOCAL SIMILARITY REGULARIZED SPARSE REPRESENTATION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Tang, Songze
    Zhou, Nan
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5120 - 5123
  • [26] Hyperspectral Image Denoising and Anomaly Detection Based on Low-Rank and Sparse Representations
    Zhuang, Lina
    Gao, Lianru
    Zhang, Bing
    Fu, Xiyou
    Bioucas-Dias, Jose M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] Hyperspectral image denoising and anomaly detection based on low-rank and sparse representations
    Zhuang, Lina
    Gao, Lianru
    Zhang, Bing
    Bioucas-Dias, Jose M.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIII, 2017, 10427
  • [28] Fast Hyperspectral Image Denoising and Inpainting Based on Low-Rank and Sparse Representations
    Zhuang, Lina
    Bioucas-Dias, Jose M.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (03) : 730 - 742
  • [29] Hyperspectral Image Super Resolution via Nonconvex Low-rank Constraint of Tensor Ring Factors
    Zheng Jianwei
    Zhou Xinjie
    Xu Honghui
    Qing Mengjie
    Bai Cong
    ACTA PHOTONICA SINICA, 2022, 51 (02)
  • [30] Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint
    Zhao, Yong-Qiang
    Yang, Jingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 296 - 308