HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA LOCAL LOW-RANK AND SPARSE REPRESENTATIONS

被引:0
|
作者
Dian, Renwei [1 ,2 ]
Li, Shutao [1 ]
Fang, Leyuan [1 ]
Bioucas-Dias, Jose [2 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha, Hunan, Peoples R China
[2] Univ Lisbon, Inst Super Tecn, Inst Telecomunicacoes, Lisbon, Portugal
关键词
Hyperspectral image super-resolution; low rank; superpixels; FORMULATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Remotely sensed hyperspectral images (HSIs) usually have high spectral resolution but low spatial resolution. A way to increase the spatial resolution of HSIs is to solve a fusion inverse problem, which fuses a low spatial resolution HSI (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) of the same scene. In this paper, we propose a novel HSI super-resolution approach (called LRSR), which formulates the fusion problem as the estimation of a spectral dictionary from the LR-HSI and the respective regression coefficients from both images. The regression coefficients are estimated by formulating a variational regularization problem which promotes local (in the spatial sense) low-rank and sparse regression coefficients. The local regions, where the spectral vectors are low-rank, are estimated by segmenting the HR-MSI. The formulated convex optimization is solved with SALSA. Experiments provide evidence that LRSR is competitive with respect to the state-of-the-art methods.
引用
收藏
页码:4003 / 4006
页数:4
相关论文
共 50 条
  • [1] HYPERSPECTRAL IMAGE SUPER-RESOLUTION USING SPARSE SPECTRAL UNMIXING AND LOW-RANK CONSTRAINTS
    Li, Zeyu
    Li, Chao
    Deng, Cheng
    Li, Jie
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7224 - 7227
  • [2] Spatial-Spectral Structured Sparse Low-Rank Representation for Hyperspectral Image Super-Resolution
    Xue, Jize
    Zhao, Yong-Qiang
    Bu, Yuanyang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    Philips, Wilfried
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3084 - 3097
  • [3] NON-LOCAL BLIND HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA 4D SPARSE TENSOR FACTORIZATION AND LOW-RANK
    Wan, Wei
    Guo, Weihong
    Liu, Jun
    Huang, Haiyang
    INVERSE PROBLEMS AND IMAGING, 2020, 14 (02) : 339 - 358
  • [4] Single image super-resolution via adaptive sparse representation and low-rank constraint
    Li, Xuesong
    Cao, Guo
    Zhang, Youqiang
    Wang, Bisheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 55 : 319 - 330
  • [5] Hyperspectral Super-Resolution via GlobalLocal Low-Rank Matrix Estimation
    Wu, Ruiyuan
    Ma, Wing-Kin
    Fu, Xiao
    Li, Qiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10): : 7125 - 7140
  • [6] Cluster-based image super-resolution via jointly low-rank and sparse representation
    Han, Ningning
    Song, Zhanjie
    Li, Ying
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 : 175 - 185
  • [7] Multimode Low-Rank Relaxation and Manifold Regularization for Hyperspectral Image Super-Resolution
    Ma, Fei
    Huo, Shuai
    Liu, Siyu
    Yang, Feixia
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [8] Single Image Super-Resolution Based on Nonlocal Sparse and Low-Rank Regularization
    Liu, Chunhong
    Fang, Faming
    Xu, Yingying
    Shen, Chaomin
    PRICAI 2016: TRENDS IN ARTIFICIAL INTELLIGENCE, 2016, 9810 : 251 - 261
  • [9] Hyperspectral Super-Resolution Via Joint Regularization of Low-Rank Tensor Decomposition
    Cao, Meng
    Bao, Wenxing
    Qu, Kewen
    REMOTE SENSING, 2021, 13 (20)
  • [10] Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization
    Wang, Yao
    Chen, Xi'ai
    Han, Zhi
    He, Shiying
    REMOTE SENSING, 2017, 9 (12):