Entropy and periods for continuous graph maps

被引:1
作者
Llibre, Jaume [1 ]
Sirvent, Victor F. [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Catolica Norte, Dept Matemat, Antofagasta, Chile
基金
欧盟地平线“2020”;
关键词
Topological entropy; Periods; Lefschetz numbers; Lefschetz zeta function; Graphs;
D O I
10.1007/s40314-021-01677-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For continuous self-maps on topological graphs, we provide new relationships between their topological entropy, their homology and their periods.
引用
收藏
页数:11
相关论文
共 20 条
  • [1] TOPOLOGICAL ENTROPY
    ADLER, RL
    KONHEIM, AG
    MCANDREW, MH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) : 309 - &
  • [2] Alseda Ll., 2000, Combinatorial dynamics and entropy in dimension one, volume 5 of Advanced Series in Nonlinear Dynamics
  • [3] [Anonymous], 1993, CONTEMP MATH-SINGAP
  • [4] BLOKH AM, 1992, LECT NOTES MATH, V1514, P24
  • [5] Brown R.F., 1971, LEFSCHETZ FIXED POIN
  • [6] Franks J., 1982, CBSM REGIONAL C SER, V49
  • [7] Topological entropy of continuous self-maps on a graph
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    Gao, Wei
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04)
  • [8] On the periods of a continuous self-map on a graph
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
  • [9] PERIODIC POINTS OF C-1 MAPS AND THE ASYMPTOTIC LEFSCHETZ NUMBER
    GUASCHI, J
    LLIBRE, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (05): : 1369 - 1373
  • [10] Hatcher A., 2001, ALGEBRAIC TOPOLOGY