Latent variable pictorial structure for human pose estimation on depth images

被引:6
|
作者
He, Li [1 ]
Wang, Guijin [1 ]
Liao, Qingmin [2 ]
Xue, Jing-Hao [3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] Grad Sch Shenzhen, Dept Elect Engn, Tsinghua Campus, Shenzhen 518055, Peoples R China
[3] UCL, Dept Stat Sci, London WC1E 6BT, England
关键词
Pose estimation; Pictorial structure; Latent variable; Body silhouette; Regression forest; Depth images; REGRESSION FORESTS;
D O I
10.1016/j.neucom.2016.04.009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prior models of human pose play a key role in state-of-the-art techniques for monocular pose estimation. However, a simple Gaussian model cannot represent well the prior knowledge of the pose diversity on depth images. In this paper, we develop a latent variable-based prior model by introducing a latent variable into the general pictorial structure. Two key characteristics of our model (we call Latent Variable Pictorial Structure) are as follows: (1) it adaptively adopts prior pose models based on the estimated value of the latent variable; and (2) it enables the learning of a more accurate part classifier. Experimental results demonstrate that the proposed method outperforms other state-of-the-art methods in recognition rate on the public datasets. (C) 2016 Published by Elsevier B.V.
引用
收藏
页码:52 / 61
页数:10
相关论文
共 50 条
  • [1] Unsupervised Human Pose Estimation on Depth Images
    Blanc-Beyne, Thibault
    Carlier, Axel
    Mouysset, Sandrine
    Charvillat, Vincent
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE TRACK, ECML PKDD 2020, PT IV, 2021, 12460 : 358 - 373
  • [2] Gaussian Process Latent Variable Models for human pose estimation
    Ek, Carl Henrik
    Torr, Philip H. S.
    Lawrence, Neil D.
    MACHINE LEARNING FOR MULTIMODAL INTERACTION, 2008, 4892 : 132 - +
  • [3] HUMAN POSE ESTIMATION BASED ON CONSTRAINT PICTORIAL STRUCTURE MODEL
    Luo, Wanying
    Ruan, Qiuqi
    2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 1257 - 1262
  • [4] ANN for human pose estimation in low resolution depth images
    Szczuko, Piotr
    2017 SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, ARRANGEMENTS, AND APPLICATIONS (SPA 2017), 2017, : 354 - 359
  • [5] Efficient Human Pose Estimation from Single Depth Images
    Shotton, Jamie
    Girshick, Ross
    Fitzgibbon, Andrew
    Sharp, Toby
    Cook, Mat
    Finocchio, Mark
    Moore, Richard
    Kohli, Pushmeet
    Criminisi, Antonio
    Kipman, Alex
    Blake, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (12) : 2821 - 2840
  • [6] Context and Observation Driven latent variable model for human pose estimation
    Gupta, Abhinav
    Chen, Trista
    Chen, Francine
    Kimber, Don
    Davis, Larry S.
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 1309 - +
  • [7] Human Pose Estimation based on Manifold Gaussian Process with Depth Images
    Xie, Yuhui
    Ji, Ruirui
    Wang, Wen
    Wang, Zhilian
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [8] Multi-task Forest for Human Pose Estimation in Depth Images
    Lallemand, Joe
    Pauly, Olivier
    Schwarz, Loren
    Tan, David
    Ilic, Slobodan
    2013 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2013), 2013, : 271 - 278
  • [9] Pictorial Structures on RGB-D Images for Human Pose Estimation in the Operating Room
    Kadkhodamohammadi, Abdolrahim
    Gangi, Afshin
    de Mathelin, Michel
    Padoy, Nicolas
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT I, 2015, 9349 : 363 - 370
  • [10] Stereo Pictorial Structure for 2D articulated human pose estimation
    Manuel I. López-Quintero
    Manuel J. Marín-Jiménez
    Rafael Muñoz-Salinas
    Francisco J. Madrid-Cuevas
    Rafael Medina-Carnicer
    Machine Vision and Applications, 2016, 27 : 157 - 174