Locally stationary long memory estimation

被引:100
作者
Roueff, Francois [1 ]
von Sachs, Rainer [2 ]
机构
[1] CNRS LTCI, Telecom Paris, Inst Telecom, F-75634 Paris 13, France
[2] Catholic Univ Louvain, IMMAQ, Inst Stat Biostat & Sci Actuarielles ISBA, B-1348 Louvain, Belgium
关键词
Locally stationary process; Long memory; Semi-parametric estimation; Wavelets; PARAMETER; INFERENCE; MODELS;
D O I
10.1016/j.spa.2010.12.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
There exists a wide literature on parametrically or semi-parametrically modelling strongly dependent time series using a long-memory parameter d, including more recent work on wavelet estimation. As a generalization of these latter approaches, in this work we allow the long-memory parameter d to be varying over time. We adopt a semi-parametric approach in order to avoid fitting a time-varying parametric model, such as tvARFIMA, to the observed data. We study the asymptotic behavior of a local log-regression wavelet estimator of the time-dependent d. Both simulations and a real data example complete our work on providing a fairly general approach. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:813 / 844
页数:32
相关论文
共 32 条
[1]   Wavelet analysis of long-range-dependent traffic [J].
Abry, P ;
Veitch, D .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) :2-15
[2]   Modeling and forecasting realized volatility [J].
Andersen, TG ;
Bollerslev, T ;
Diebold, FX ;
Labys, P .
ECONOMETRICA, 2003, 71 (02) :579-625
[3]   On parameter estimation for locally stationary long-memory processes [J].
Beran, Jan .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) :900-915
[4]   An alternative point of view on Lepski's method [J].
Birgé, L .
STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET, 2001, 36 :113-133
[5]  
Dahlhaus R, 1997, ANN STAT, V25, P1
[6]   On the Kullback-Leibler information divergence of locally stationary processes [J].
Dahlhaus, R .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1996, 62 (01) :139-168
[7]   A likelihood approximation for locally stationary processes [J].
Dahlhaus, R .
ANNALS OF STATISTICS, 2000, 28 (06) :1762-1794
[8]   Locally adaptive fitting of semiparametric models to nonstationary time series [J].
Dahlhaus, R ;
Neumann, MH .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 91 (02) :277-308
[9]   Statistical inference for time-varying ARCH processes [J].
Dahlhaus, Rainer ;
Rao, Suhasini Subba .
ANNALS OF STATISTICS, 2006, 34 (03) :1075-1114
[10]   Local inference for locally stationary time series based on the empirical spectral measure [J].
Dahlhaus, Rainer .
JOURNAL OF ECONOMETRICS, 2009, 151 (02) :101-112