Frankl's conjecture and lattices derived from reduced semigroups

被引:0
作者
Joshi, Vinayak [1 ]
机构
[1] Savitribai Phule Pune Univ, Dept Math, Pune 411007, Maharashtra, India
关键词
GRAPH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove Frankl's Conjecture for the class of lattices (a subclass of 0-distributive lattices) derived from reduced semigroups, which satisfies the annihilator condition. A new conjecture is introduced for the class of 0-distributive lattices which implies Frankl's Conjecture. Also, we observe that the class of multiplicative lattices also satisfies Frankl's Conjecture.(1)
引用
收藏
页码:301 / 307
页数:7
相关论文
共 20 条
  • [1] Abdollahi A, 2017, ELECTRON J COMB, V24
  • [2] Lower semimodular types of lattices: Frankl's conjecture holds for lower quasi-semimodular lattices
    Abe, T
    Nakano, B
    [J]. GRAPHS AND COMBINATORICS, 2000, 16 (01) : 1 - 16
  • [3] Strong semimodular lattices and Frankl's conjecture
    Abe, T
    [J]. ALGEBRA UNIVERSALIS, 2000, 44 (3-4) : 379 - 382
  • [4] [Anonymous], 1986, ENUMERATIVE COMBINAT
  • [5] [Anonymous], 1998, General Lattice Theory
  • [6] Reducible classes of finite lattices
    Bordalo, G
    Monjardet, B
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1996, 13 (04): : 379 - 390
  • [7] The Journey of the Union-Closed Sets Conjecture
    Bruhn, Henning
    Schaudt, Oliver
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (06) : 2043 - 2074
  • [8] Czedli G., 2008, ACTA U PALACKI OLOMU, V47, P47
  • [9] On the connectedness of the complement of the zero-divisor graph of a poset
    Devhare, Sarika
    Joshi, Vinayak
    LaGrange, John
    [J]. QUAESTIONES MATHEMATICAE, 2019, 42 (07) : 939 - 951
  • [10] Huckaba J. A., 1988, COMMUTATIVE RINGS ZE