Integrated balanced homodyne photonic-electronic detector for beyond 20 GHz shot-noise-limited measurements

被引:48
作者
Bruynsteen, Cedric [1 ]
Vanhoecke, Michael [1 ]
Bauwelinck, Johan [1 ]
Yin, Xin [1 ]
机构
[1] Univ Ghent, Dept INTEC, IDLab, Imec, B-9052 Ghent, Belgium
基金
欧盟地平线“2020”;
关键词
QUANTUM; GENERATION;
D O I
10.1364/OPTICA.420973
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical homodyne detection is used in numerous quantum and classical applications that demand high levels of sensitivity. However, performance is typically limited due to the use of bulk optics and discrete receiver electronics. To address these performance issues, in this work we present a co-integrated balanced homodyne detector consisting of a silicon photonics optical front end and a custom integrated transimpedance amplifier designed in a 100 nm GaAs pHEMT technology. The high level of co-design and integration provides enhanced levels of stability, bandwidth, and noise performance. The presented detector shows a linear operation up to 28 dB quantum shot noise clearance and a high degree of common-mode rejection, at the same time achieving a shot-noise-limited bandwidth of more than 20 GHz. The high performance of the developed devices provide enhanced operation to many sensitive quantum applications such as continuous variable quantum key distribution, quantum random number generation, or high-speed quantum tomography. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1146 / 1152
页数:7
相关论文
共 49 条
[1]   Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode [J].
Abellan, C. ;
Amaya, W. ;
Jofre, M. ;
Curty, M. ;
Acin, A. ;
Capmany, J. ;
Pruneri, V. ;
Mitchell, M. W. .
OPTICS EXPRESS, 2014, 22 (02) :1645-1654
[2]   CMOS Small-Signal and Thermal Noise Modeling at High Frequencies [J].
Antonopoulos, Angelos ;
Bucher, Matthias ;
Papathanasiou, Kostas ;
Mavredakis, Nikolaos ;
Makris, Nikolaos ;
Sharma, Rupendra Kumar ;
Sakalas, Paulius ;
Schroter, Michael .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (11) :3726-3733
[3]   Generation of time-domain-multiplexed two-dimensional cluster state [J].
Asavanant, Warit ;
Shiozawa, Yu ;
Yokoyama, Shota ;
Charoensombutamon, Baramee ;
Emura, Hiroki ;
Alexander, Rafael N. ;
Takeda, Shuntaro ;
Yoshikawa, Jun-ichi ;
Menicucci, Nicolas C. ;
Yonezawa, Hidehiro ;
Furusawa, Akira .
SCIENCE, 2019, 366 (6463) :373-+
[4]   Source-device-independent heterodyne-based quantum random number generator at 17 Gbps [J].
Avesani, Marco ;
Marangon, Davide G. ;
Vallone, Giuseppe ;
Villoresi, Paolo .
NATURE COMMUNICATIONS, 2018, 9
[5]  
Bachor H.-A., 2019, A Guide to Experiments in Quantum OpticsM, DOI DOI 10.1002/9783527695805
[6]  
Binkley DM, 2007, MIXDES 2007: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS:, P47
[7]   36 Gb/s Narrowband Photoreceiver for mmWave Analog Radio-Over-Fiber [J].
Bogaert, Laurens ;
Li, Haolin ;
van Gasse, Kasper ;
Van Kerrebrouck, Joris ;
Bauwelinck, Johan ;
Roelkens, Gunther ;
Torfs, Guy .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (12) :3289-3295
[8]   Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer [J].
Bourassa, J. Eli ;
Alexander, Rafael N. ;
Vasmer, Michael ;
Patil, Ashlesha ;
Tzitrin, Ilan ;
Matsuura, Takaya ;
Su, Daiqin ;
Baragiola, Ben Q. ;
Guha, Saikat ;
Dauphinais, Guillaume ;
Sabapathy, Krishna K. ;
Menicucci, Nicolas C. ;
Dhand, Ish .
QUANTUM, 2021, 5
[9]   Measurement of the quantum states of squeezed light [J].
Breitenbach, G ;
Schiller, S ;
Mlynek, J .
NATURE, 1997, 387 (6632) :471-475
[10]  
Carusone T.C., 2011, ANALOG INTEGR CIRC S, Vsecond