Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock

被引:41
作者
Azocar, Laura
Ciudad, Gustavo
Heipieper, Hermann J. [2 ]
Munoz, Robinson
Navia, Rodrigo [1 ]
机构
[1] Univ La Frontera, Dept Ingn Quim, Temuco, Chile
[2] UFZ Helmholtz Ctr Environm Res, Dept Environm Biotechnol, D-04318 Leipzig, Germany
关键词
Biodiesel; fatty acid methyl esters; lipase-catalyzed processes; waste frying oil; Novozym; 435; rapeseed oil; response surface methodology; BIODIESEL FUEL PRODUCTION; SOYBEAN OIL; EDIBLE OIL; TRANSESTERIFICATION; TRANSFORMATION; METHANOLYSIS; ALCOHOLYSIS; PERFORMANCE; SUNFLOWER;
D O I
10.1016/j.jbiosc.2009.12.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The application of waste frying oil (WFO) mixed with rapeseed oil as a feedstock for the effective production of fatty acid methyl esters (FAME) in a lipase-catalyzed process was investigated. The response surface methodology (RSM) was used to optimize the interaction of four variables: the percentage of WFO in the mixed feedstock, the methanol-to-oil ratio, the dosage of Novozym 435 as a catalyst and the temperature. Furthermore, the addition of methanol to the reaction mixture in a second step after 8 h was shown to effectively diminish enzyme inhibition. Using this technique, the model predicted the optimal conditions that would reach 100% FAME, including a methanol-to-oil molar ratio of 3.8:1, 100% (wt) WFO, 15% (wt) Novozym 435 and incubation at 44.5 degrees C for 12 h with agitation at 200 rpm, and verification experiments confirmed the validity of the model. According to the model, the addition of WFO increased FAME production yield, which is largely due to its higher contents of monoacylglycerols, diacylglycerols and free fatty acids (in comparison to rapeseed oil), which are more available substrates for the enzymatic catalysis. Therefore, the replacement of rapeseed oil with WFO in Novozym 435-catalyzed processes could diminish biodiesel production costs since it is a less expensive feedstock that increases the production yield and could be a potential alternative for FAME production on an industrial scale. (C) 2009, The Society for Biotechnology, Japan. All rights reserved.
引用
收藏
页码:609 / 614
页数:6
相关论文
共 21 条
[1]   Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase [J].
Al-Zuhair, Sulaiman ;
Ling, Fan Wei ;
Jun, Lim Song .
PROCESS BIOCHEMISTRY, 2007, 42 (06) :951-960
[2]  
[Anonymous], 2008, ANN BOOK ASTM STAND
[3]  
Araujo J., 1995, QUIMICA ALIMENTOS TE, P1
[4]  
*BRIT STAND I, 2003, 142142003 BS EN BSI
[5]   The potential of restaurant waste lipids as biodiesel feedstocks [J].
Canakci, Mustafa .
BIORESOURCE TECHNOLOGY, 2007, 98 (01) :183-190
[6]   Biodiesel production from sunflower, soybean, and waste cooking oils by transesterification using lipase immobilized onto a novel microporous polymer [J].
Dizge, Nadir ;
Aydiner, Coskun ;
Imer, Derya Y. ;
Bayramoglu, Mahmut ;
Tanriseven, Aziz ;
Keskinlera, Buelent .
BIORESOURCE TECHNOLOGY, 2009, 100 (06) :1983-1991
[7]   Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors [J].
Du, W ;
Xu, YY ;
Liu, DH ;
Zeng, J .
JOURNAL OF MOLECULAR CATALYSIS B-ENZYMATIC, 2004, 30 (3-4) :125-129
[8]   TRANSESTERIFICATION KINETICS OF SOYBEAN OIL [J].
FREEDMAN, B ;
BUTTERFIELD, RO ;
PRYDE, EH .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 1986, 63 (10) :1375-1380
[10]   Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock [J].
Gui, M. M. ;
Lee, K. T. ;
Bhatia, S. .
ENERGY, 2008, 33 (11) :1646-1653