A Bayesian Adaptive Unscented Kalman Filter for Aircraft Parameter and Noise Estimation

被引:3
|
作者
Ding, Di [1 ,2 ]
He, Kai F. [3 ]
Qian, Wei Q. [2 ]
机构
[1] China Aerodynam Res & Dev Ctr, State Key Lab Aerodynam, Mianyang 621000, Sichuan, Peoples R China
[2] China Aerodynam Res & Dev Ctr, Computat Aerodynam Inst, Mianyang 621000, Sichuan, Peoples R China
[3] China Aerodynam Res & Dev Ctr, Aerosp Technol Inst, Mianyang 621000, Sichuan, Peoples R China
关键词
ERROR COVARIANCE-MATRIX; SEQUENTIAL STATE; ENSEMBLE KALMAN; IDENTIFICATION;
D O I
10.1155/2021/9002643
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a new algorithm for the aerodynamic parameter and noise estimation for aircraft dynamical systems. The Bayesian inference method is combined with an unscented Kalman filter to estimate the augmented states and the unknown noise covariance parameters jointly. A Gauss-Newton method is utilized to sequentially maximize the posterior likelihood function for the noise unknown parameter estimation. The performance of the proposed algorithm is evaluated and compared with two other UKFs via a flight scenario of a given aircraft. The results indicate that the proposed algorithm has equivalent performance to the simplified UKF with prior noise information and slightly outperforms the parallel UKF on precision and efficiency in this flight scenario assessment. Then, the consistency and accuracy of the algorithm are further validated by a Monte Carlo simulation with random process noise covariance. This adaptive algorithm provides another feasible and effective way for estimating aerodynamic parameters from the aircraft real flight data with unknown noise characteristics.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Adaptive Fading Bayesian Unscented Kalman Filter and Smoother for State Estimation of Unmanned Aircraft Systems
    Liu, Zhong
    Chan, Shing-Chow
    IEEE ACCESS, 2020, 8 : 119470 - 119486
  • [2] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Loïc J. Azzalini
    David Crompton
    Gabriele M. T. D’Eleuterio
    Frances Skinner
    Milad Lankarany
    Journal of Computational Neuroscience, 2023, 51 : 223 - 237
  • [3] Aerodynamic parameter estimation using adaptive unscented Kalman filter
    Majeed, M.
    Kar, Indra Narayan
    AIRCRAFT ENGINEERING AND AEROSPACE TECHNOLOGY, 2013, 85 (04): : 267 - 279
  • [4] Adaptive unscented Kalman filter for neuronal state and parameter estimation
    Azzalini, Loic J.
    Crompton, David
    D'Eleuterio, Gabriele M. T.
    Skinner, Frances
    Lankarany, Milad
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2023, 51 (02) : 223 - 237
  • [5] Adaptive Unscented Kalman Filter for Online State, Parameter, and Process Covariance Estimation
    Riva, Mauro Hernan
    Dagen, Matthias
    Ortmaier, Tobias
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 4513 - 4519
  • [6] State Parameter Estimation of Intelligent Vehicles Based on an Adaptive Unscented Kalman Filter
    Wang, Yu
    Li, Yushan
    Zhao, Ziliang
    ELECTRONICS, 2023, 12 (06)
  • [7] USV Parameter Estimation: Adaptive Unscented Kalman Filter-Based Approach
    Shen, Han
    Wen, Guanghui
    Lv, Yuezu
    Zhou, Jun
    Wang, Linan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7751 - 7761
  • [8] SOC Estimation with an Adaptive Unscented Kalman Filter Based on Model Parameter Optimization
    Guo, Xiangwei
    Xu, Xiaozhuo
    Geng, Jiahao
    Hua, Xian
    Gao, Yan
    Liu, Zhen
    APPLIED SCIENCES-BASEL, 2019, 9 (19):
  • [9] Fuzzy adaptive variational Bayesian unscented Kalman filter
    Wang, Guo-Yong
    Guan, Bing-Lei
    Journal of Information Hiding and Multimedia Signal Processing, 2015, 6 (04): : 740 - 749
  • [10] A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance
    Zheng, Binqi
    Fu, Pengcheng
    Li, Baoqing
    Yuan, Xiaobing
    SENSORS, 2018, 18 (03):