Further accuracy tests on Adomian decomposition method for chaotic systems

被引:48
作者
Abdulaziz, O. [1 ]
Noor, N. F. M. [1 ]
Hashim, I. [1 ]
Noorani, M. S. M. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi 43600, Selangor, Malaysia
关键词
D O I
10.1016/j.chaos.2006.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Adomian decomposition method (ADM) is treated as an algorithm for approximating the solutions of the Lorenz and Chen systems in a sequence of time intervals, i.e. the classical ADM is converted into a hybrid analytical-numerical method. Comparisons with the seventh- and eighth-order Runge-Kutta method (RK78) reconfirm the very high accuracy of the hybrid analytical-numerical ADM. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1405 / 1411
页数:7
相关论文
共 9 条
  • [1] Adomian G., 1994, SOLVING FRONTIER PRO
  • [2] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [3] Accuracy of the Adomian decomposition method applied to the Lorenz system
    Hashim, I
    Noorani, MSM
    Ahmad, R
    Bakar, SA
    Ismail, ES
    Zakaria, AM
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 28 (05) : 1149 - 1158
  • [4] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [5] 2
  • [6] NETO HL, INT J HEAT IN PRESS
  • [7] NOORANI MSM, CHAOS SOLIT IN PRESS
  • [8] Sprott J. C., 2003, CHAOS TIME SERIES AN
  • [9] Convergence and accuracy of Adomian's decomposition method for the solution of Lorenz equations
    Vadasz, P
    Olek, S
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (10) : 1715 - 1734