Further accuracy tests on Adomian decomposition method for chaotic systems

被引:48
作者
Abdulaziz, O. [1 ]
Noor, N. F. M. [1 ]
Hashim, I. [1 ]
Noorani, M. S. M. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Bangi 43600, Selangor, Malaysia
关键词
D O I
10.1016/j.chaos.2006.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Adomian decomposition method (ADM) is treated as an algorithm for approximating the solutions of the Lorenz and Chen systems in a sequence of time intervals, i.e. the classical ADM is converted into a hybrid analytical-numerical method. Comparisons with the seventh- and eighth-order Runge-Kutta method (RK78) reconfirm the very high accuracy of the hybrid analytical-numerical ADM. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1405 / 1411
页数:7
相关论文
共 9 条
[1]  
Adomian G., 1994, SOLVING FRONTIER PRO
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]   Accuracy of the Adomian decomposition method applied to the Lorenz system [J].
Hashim, I ;
Noorani, MSM ;
Ahmad, R ;
Bakar, SA ;
Ismail, ES ;
Zakaria, AM .
CHAOS SOLITONS & FRACTALS, 2006, 28 (05) :1149-1158
[4]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[5]  
2
[6]  
NETO HL, INT J HEAT IN PRESS
[7]  
NOORANI MSM, CHAOS SOLIT IN PRESS
[8]  
Sprott J. C., 2003, CHAOS TIME SERIES AN
[9]   Convergence and accuracy of Adomian's decomposition method for the solution of Lorenz equations [J].
Vadasz, P ;
Olek, S .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2000, 43 (10) :1715-1734