Large scale kernel regression via linear programming

被引:52
作者
Mangasarian, OL
Musicant, DR
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
[2] Carleton Coll, Dept Math & Comp Sci, Northfield, MN 55057 USA
基金
美国国家科学基金会;
关键词
kernel regression; support vector machines; linear programming;
D O I
10.1023/A:1012422931930
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of tolerant data fitting by a nonlinear surface, induced by a kernel-based support vector machine is formulated as a linear program with fewer number of variables than that of other linear programming formulations. A generalization of the linear programming chunking algorithm for arbitrary kernels is implemented for solving problems with very large datasets wherein chunking is performed on both data points and problem variables. The proposed approach tolerates a small error, which is adjusted parametrically, while fitting the given data. This leads to improved fitting of noisy data (over ordinary least error solutions) as demonstrated computationally. Comparative numerical results indicate an average time reduction as high as 26.0% over other formulations, with a maximal time reduction of 79.7%. Additionally, linear programs with as many as 16,000 data points and more than a billion nonzero matrix elements are solved.
引用
收藏
页码:255 / 269
页数:15
相关论文
共 23 条
[1]  
Bennett KP, 1999, ADVANCES IN KERNEL METHODS, P307
[2]   Massive data discrimination via linear support vector machines [J].
Bradley, PS ;
Mangasarian, OL .
OPTIMIZATION METHODS & SOFTWARE, 2000, 13 (01) :1-10
[3]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[4]  
Cherkassky V.S., 1998, LEARNING DATA CONCEP, V1st ed.
[5]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[6]   DECOMPOSITION PRINCIPLE FOR LINEAR-PROGRAMS [J].
DANTZIG, GB ;
WOLFE, P .
OPERATIONS RESEARCH, 1960, 8 (01) :101-111
[7]   A LINEAR-PROGRAMMING APPROACH TO THE CUTTING-STOCK PROBLEM [J].
GILMORE, PC ;
GOMORY, RE .
OPERATIONS RESEARCH, 1961, 9 (06) :849-859
[8]  
Huber P. J., 1981, ROBUST STAT
[9]   ROBUST ESTIMATION OF LOCATION PARAMETER [J].
HUBER, PJ .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :73-&
[10]  
*ILOG CPLEX DIV, 1991, ILOG CPLEX 6 5 REF M