Disease gene discovery through integrative genomics

被引:59
作者
Giallourakis, C [1 ]
Henson, C
Reich, M
Xie, XH
Mootha, VK
机构
[1] Harvard Univ, Broad Inst, Cambridge, MA 02139 USA
[2] MIT, Broad Inst, Cambridge, MA 02139 USA
[3] Massachusetts Gen Hosp, Gastrointestinal Unit, Boston, MA 02114 USA
[4] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02446 USA
[5] Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA
关键词
human genetics; positional cloning; functional genomics; machine learning;
D O I
10.1146/annurev.genom.6.080604.162234
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The availability of complete genome sequences and the wealth of large-scale biological data sets now provide an unprecedented opportunity to elucidate the genetic basis of rare and common human diseases. Here we review some of the emerging genomics technologies and data resources that can be used to infer gene function to prioritize candidate genes. We then describe some computational strategies for integrating these large-scale data sets to provide more faithful descriptions of gene function, and how such approaches have recently been applied to discover genes underlying Mendelian disorders. Finally, we discuss future prospects and challenges for using integrative genomics to systematically discover not only single genes but also entire gene networks that underlie and modify human disease.
引用
收藏
页码:381 / 406
页数:26
相关论文
共 117 条
[1]   SEQUENCE IDENTIFICATION OF 2,375 HUMAN BRAIN GENES [J].
ADAMS, MD ;
DUBNICK, M ;
KERLAVAGE, AR ;
MORENO, R ;
KELLEY, JM ;
UTTERBACK, TR ;
NAGLE, JW ;
FIELDS, C ;
VENTER, JC .
NATURE, 1992, 355 (6361) :632-634
[2]   Proteomic characterization of the human centrosome by protein correlation profiling [J].
Andersen, JS ;
Wilkinson, CJ ;
Mayor, T ;
Mortensen, P ;
Nigg, EA ;
Mann, M .
NATURE, 2003, 426 (6966) :570-574
[3]  
Andersen JS, 2002, CURR BIOL, V12, P1, DOI 10.1016/S0960-9822(01)00650-9
[4]   Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes [J].
Ashrafi, K ;
Chang, FY ;
Watts, JL ;
Fraser, AG ;
Kamath, RS ;
Ahringer, J ;
Ruvkun, G .
NATURE, 2003, 421 (6920) :268-272
[5]   The knockout mouse project [J].
Austin, CP ;
Battey, JF ;
Bradley, A ;
Bucan, M ;
Capecchi, M ;
Collins, FS ;
Dove, WF ;
Duyk, G ;
Dymecki, S ;
Eppig, JT ;
Grieder, FB ;
Heintz, N ;
Hicks, G ;
Insel, TR ;
Joyner, A ;
Koller, BH ;
Lloyd, KCK ;
Magnuson, T ;
Moore, MW ;
Nagy, A ;
Pollock, JD ;
Roses, AD ;
Sands, AT ;
Seed, B ;
Skarnes, WC ;
Snoddy, J ;
Soriano, P ;
Stewart, DJ ;
Stewart, F ;
Stillman, B ;
Varmus, H ;
Varticovski, L ;
Verma, IM ;
Vogt, TF ;
von Melchner, H ;
Witkowski, J ;
Woychik, RP ;
Wurst, W ;
Yancopoulos, GD ;
Young, SG ;
Zambrowicz, B .
NATURE GENETICS, 2004, 36 (09) :921-924
[6]   Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening [J].
Aza-Blanc, P ;
Cooper, CL ;
Wagner, K ;
Batalov, S ;
Deveraux, QL ;
Cooke, MP .
MOLECULAR CELL, 2003, 12 (03) :627-637
[7]  
BAGSHAW RD, 2004, MOL CELL PROTEOMICS
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   Ultraconserved elements in the human genome [J].
Bejerano, G ;
Pheasant, M ;
Makunin, I ;
Stephen, S ;
Kent, WJ ;
Mattick, JS ;
Haussler, D .
SCIENCE, 2004, 304 (5675) :1321-1325
[10]   Phylogenetic shadowing and computational identification of human microRNA genes [J].
Berezikov, E ;
Guryev, V ;
van de Belt, J ;
Wienholds, E ;
Plasterk, RHA ;
Cuppen, E .
CELL, 2005, 120 (01) :21-24