On Bayesian A- and D-Optimal Experimental Designs in Infinite Dimensions

被引:50
作者
Alexanderian, Alen [1 ,2 ]
Gloor, Philip J. [3 ]
Ghattas, Omar [1 ,4 ,5 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] US Naval Acad, Dept Math, Annapolis, MD 21402 USA
[4] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA
[5] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
来源
BAYESIAN ANALYSIS | 2016年 / 11卷 / 03期
基金
美国国家科学基金会;
关键词
Bayesian inference in Hilbert space; Gaussian measure; Kullback-Leibler divergence; Bayesian optimal experimental design; expected information gain; Bayes risk; INVERSE PROBLEMS;
D O I
10.1214/15-BA969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider Bayesian linear inverse problems in infinite-dimensional separable Hilbert spaces, with a Gaussian prior measure and additive Gaussian noise model, and provide an extension of the concept of Bayesian D-optimality to the infinite-dimensional case. To this end, we derive the infinite-dimensional version of the expression for the Kullback-Leibler divergence from the posterior measure to the prior measure, which is subsequently used to derive the expression for the expected information gain. We also study the notion of Bayesian A-optimality in the infinite-dimensional setting, and extend the well known (in the finite-dimensional case) equivalence of the Bayes risk of the MAP estimator with the trace of the posterior covariance, for the Gaussian linear case, to the infinite-dimensional Hilbert space case.
引用
收藏
页码:671 / 695
页数:25
相关论文
共 21 条
[1]   A-OPTIMAL DESIGN OF EXPERIMENTS FOR INFINITE-DIMENSIONAL BAYESIAN LINEAR INVERSE PROBLEMS WITH REGULARIZED l0-SPARSIFICATION [J].
Alexanderian, Alen ;
Petra, Noemi ;
Stadler, Georg ;
Ghattas, Omar .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (05) :A2122-A2148
[2]  
[Anonymous], 1997, Stat. Comput., DOI DOI 10.1023/A:1018577817064
[3]  
[Anonymous], INTRO INFINITE DIMEN
[4]  
[Anonymous], INVERSE PROBLEM THEO
[5]  
Atkinson A. C., 1992, OPTIMUM EXPT DESIGNS
[6]  
Berger J.O., 1985, STAT DECISION THEORY, DOI DOI 10.1007/978-1-4757-4286-2
[7]   Bayesian experimental design: A review [J].
Chaloner, K ;
Verdinelli, I .
STATISTICAL SCIENCE, 1995, 10 (03) :273-304
[8]  
Conway J. B., 2000, COURSE OPERATOR THEO
[9]  
Da parato G, 2014, STOCHASTIC EQUATIONS, V152
[10]  
Da Prato G., 2002, 2 ORDER PARTIAL DIFF, V293, DOI [10.1017/CBO9780511543210, DOI 10.1017/CBO9780511543210]