Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals

被引:94
作者
Dominguez, V. [1 ]
Graham, I. G. [2 ]
Smyshlyaev, V. P. [3 ]
机构
[1] Univ Publ Navarra, Escuela Tecn Super Ingenieros Ind & Telecomunicac, Dept Ingn Matemat & Informat, Tudela 31500, Spain
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[3] UCL, Dept Math, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
numerical integration; highly oscillatory integrals; Clenshaw-Curtis quadrature; HIGH-FREQUENCY; NUMERICAL QUADRATURE; SCATTERING; FOURIER; EQUATIONS;
D O I
10.1093/imanum/drq036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain new results on Filon-type methods for computing oscillatory integrals of the form integral(1)(-1) f(s) exp(iks) ds. We use a Filon approach based on interpolating f at the classical Clenshaw-Curtis points cos(j pi/N), j = 0, ... , N. The rule may be implemented in O(N log N) operations. We prove error estimates that show explicitly how the error depends both on the parameters k and N and on the Sobolev regularity of f. In particular we identify the regularity of f required to ensure the maximum rate of decay of the error as k -> infinity. We also describe a method for implementing the method and prove its stability both when N <= k and N > k. Numerical experiments illustrate both the stability of the algorithm and the sharpness of the error estimates.
引用
收藏
页码:1253 / 1280
页数:28
相关论文
共 33 条
[1]  
[Anonymous], 1964, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 2008, NUMERICAL METHODS SC
[3]   Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case [J].
Bruno, OP ;
Geuzaine, CA ;
Monro, JA ;
Reitich, F .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1816) :629-645
[4]   An O (1) integration scheme for three-dimensional surface scattering problems [J].
Bruno, Oscar P. ;
Geuzaine, Christophe A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 204 (02) :463-476
[5]   Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies, and glancing incidences [J].
Bruno, Oscar P. ;
Haslam, Michael C. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (03) :658-668
[6]  
Davis P. J., 2007, METHODS NUMERICAL IN
[7]   A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering [J].
Dominguez, V. ;
Graham, I. G. ;
Smyshlyaev, V. P. .
NUMERISCHE MATHEMATIK, 2007, 106 (03) :471-510
[8]   <bold>Statistical Model Order Reduction for Interconnect Circuits Considering Spatial Correlations</bold> [J].
Fan, Jeffrey ;
Mi, Ning ;
Tan, Sheldon X. -D. ;
Cai, Yici ;
Hong, Xianlong .
2007 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION, VOLS 1-3, 2007, :1508-+
[9]   IMPLEMENTING CLENSHAW-CURTIS QUADRATURE .1. METHODOLOGY AND EXPERIENCE [J].
GENTLEMAN, WM .
COMMUNICATIONS OF THE ACM, 1972, 15 (05) :337-+
[10]   A sparse discretization for integral equation formulations of high frequency scattering problems [J].
Huybrechs, Daan ;
Vandewalle, Stefan .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (06) :2305-2328