Classical benchmarking for microwave quantum illumination

被引:8
作者
Karsa, Athena [1 ,2 ]
Pirandola, Stefano [1 ]
机构
[1] Univ York, Dept Comp Sci, York, England
[2] Univ York, Dept Comp Sci, York YO10 5GH, England
来源
IET QUANTUM COMMUNICATION | 2021年 / 2卷 / 04期
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
photons; quantum information; quantum noise; quantum optics; quantum theory; DISCRETE LOGARITHMS; ALGORITHMS; COMPUTATION; PATTERNS;
D O I
10.1049/qtc2.12025
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum illumination theoretically promises up to a 6 dB error-exponent advantage in target detection over the best classical protocol. The advantage is maximised by a regime that includes a very high background, which occurs naturally when one considers microwave operation. Such a regime has well-known practical limitations, though it is clear that, theoretically, knowledge of the associated classical benchmark in the microwave is lacking. The requirement of amplifiers for signal detection necessarily renders the optimal classical protocol here different to that which is traditionally used, and only applicable in the optical domain. This work outlines what is the true classical benchmark for the microwave Quantum illumination using coherent states, providing new bounds on error probability and closed formulae for the receiver operating characteristic, for both optimal (based on quantum relative entropy) and homodyne detection schemes. An alternative source generation procedure based on coherent states is also proposed, which demonstrates the potential to make classically optimal performances achievable in optical applications. The same bounds and measures for the performance of such a source are provided, and its potential utility in the future of room temperature quantum detection schemes in the microwave is discussed.
引用
收藏
页码:246 / 257
页数:12
相关论文
共 50 条
  • [41] Quantum/classical interface: A geometric approach from the classical side
    Baylis, WE
    [J]. COMPUTATIONAL NONCOMMUTATIVE ALGEBRA AND APPLICATIONS, 2004, 136 : 127 - 154
  • [43] Quantum computing without quantum computers: Database search and data processing using classical wave superposition
    Balynsky, Mykhaylo
    Chiang, Howard
    Gutierrez, David
    Kozhevnikov, Alexander
    Filimonov, Yuri
    Khitun, Alexander
    [J]. JOURNAL OF APPLIED PHYSICS, 2021, 130 (16)
  • [44] Quantifying the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmarking
    Muhonen, J. T.
    Laucht, A.
    Simmons, S.
    Dehollain, J. P.
    Kalra, R.
    Hudson, F. E.
    Freer, S.
    Itoh, K. M.
    Jamieson, D. N.
    McCallum, J. C.
    Dzurak, A. S.
    Morello, A.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (15)
  • [45] Quantum Tomography of Microwave Region
    Miroshnichenko, G. P.
    [J]. XII INTERNATIONAL WORKSHOP ON QUANTUM OPTICS (IWQO-2015), 2015, 103
  • [46] Microwave Quantum Acoustic Processor
    Arrangoiz-Arriola, Patricio
    Wollack, E. Alex
    Pechal, Marek
    Jiang, Wentao
    Wang, Zhaoyou
    McKenna, Timothy P.
    Witmer, Jeremy
    Van Laer, Raphael
    Cleland, Agnetta
    Lee, Nathan
    Sarabalis, Christopher J.
    Stas, Pieter-Jan
    Safavi-Naeini, Amir H.
    [J]. 2019 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2019, : 255 - 258
  • [47] Microwave CQED quantum tomography
    George P. Miroshnichenko
    [J]. The European Physical Journal D, 2016, 70
  • [48] Classical algorithms for quantum mean values
    Bravyi, Sergey
    Gosset, David
    Movassagh, Ramis
    [J]. NATURE PHYSICS, 2021, 17 (03) : 337 - +
  • [49] Ghost Polarimetry in Classical and Quantum Light
    S. A. Magnitskiy
    D. P. Agapov
    I. A. Belovolov
    P. P. Gostev
    D. N. Frolovtsev
    A. S. Chirkin
    [J]. Moscow University Physics Bulletin, 2021, 76 : 424 - 439
  • [50] Identity Rule for Classical and Quantum Theories
    Mladen Pavicic
    [J]. International Journal of Theoretical Physics, 1998, 37 : 2099 - 2103