An intelligent epilepsy seizure detection system using adaptive mode decomposition of EEG signals

被引:14
作者
Kumar, Gulshan [1 ]
Chander, Subhash [2 ]
Almadhor, Ahmad [3 ]
机构
[1] Shaheed Bhagat Singh State Univ, Ferozepur, Punjab, India
[2] Malout Inst Management & Informat Technol, Malout, Punjab, India
[3] Jouf Univ, Skaka Aljouf, Saudi Arabia
关键词
Electroencephalogram (EEG); Epilepsy; Machine learning; Neural network; Seizure detection; Intrinsic mode functions; Variational mode decomposition; FEATURE-EXTRACTION; WAVELET TRANSFORM; CLASSIFICATION; DEEP;
D O I
10.1007/s13246-022-01111-9
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Epilepsy is a chronic neurological disorder that involves abnormal electrical signal patterns of the brain called seizures. The brain's electrical signals can be recorded using an electroencephalogram (EEG). EEG recordings can be used to monitor complex and non-stationary signals produced by the brain for detecting epilepsy seizures. Machine learning (ML) methods have been successfully applied in different domains to accurately classify the patterns based upon dataset features. However, ML methods are unable to analyze the raw EEG signals. Appropriate features must be extracted from EEG recordings for detecting epilepsy seizures using signal processing methods. This work proposes an intelligent system by integrating variational mode decomposition (VMD) and Hilbert transform (HT) method for extracting useful features from EEG signals and stacked neural network (NN) method for detecting epilepsy seizures. VMD method decomposers EEG signals into intrinsic mode functions, followed by the HT method for extracting features from EEG signals. The stacked-NN approach is applied for detecting epilepsy seizures using extracted features. The performance of the proposed system is validated using benchmark datasets for epilepsy seizure detection provided by Bonn University and, Neurology and Sleep Centre, New Delhi (NSC-ND). The performance of the proposed system is compared with other ML methods and state of the art approaches in the field. The reported results demonstrate that the proposed system can detect up to 100% accurate epilepsy seizures using NSC-ND data set and up to 99% accurate epilepsy seizures using Bonn university dataset. The comparative results also demonstrate the better performance of the proposed system over other ML methods and existing approaches for detecting epilepsy seizures. The remarkable performance of the proposed system can help neurological experts to detect epilepsy seizures accurately using EEG signals and can be embedded into the real-time diagnosis of the disease.
引用
收藏
页码:261 / 272
页数:12
相关论文
共 49 条
[1]   Applications, Deployments, and Integration of Internet of Drones (IoD): A Review [J].
Abualigah, Laith ;
Diabat, Ali ;
Sumari, Putra ;
Gandomi, Amir H. .
IEEE SENSORS JOURNAL, 2021, 21 (22) :25532-25546
[2]   Aquila Optimizer: A novel meta-heuristic optimization algorithm [J].
Abualigah, Laith ;
Yousri, Dalia ;
Abd Elaziz, Mohamed ;
Ewees, Ahmed A. ;
Al-qaness, Mohammed A. A. ;
Gandomi, Amir H. .
COMPUTERS & INDUSTRIAL ENGINEERING, 2021, 157 (157)
[3]   The Arithmetic Optimization Algorithm [J].
Abualigah, Laith ;
Diabat, Ali ;
Mirjalili, Seyedali ;
Elaziz, Mohamed Abd ;
Gandomi, Amir H. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
[4]   Automated diagnosis of epileptic EEG using entropies [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Chattopadhyay, Subhagata ;
Ng, Kwan-Hoong ;
Suri, Jasjit S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (04) :401-408
[6]   EEG Pathology Detection Based on Deep Learning [J].
Alhussein, Musaed ;
Muhammad, Ghulam ;
Hossain, M. Shamim .
IEEE ACCESS, 2019, 7 :27781-27788
[7]   Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques [J].
Amin, Hafeez Ullah ;
Malik, Aamir Saeed ;
Ahmad, Rana Fayyaz ;
Badruddin, Nasreen ;
Kamel, Nidal ;
Hussain, Muhammad ;
Chooi, Weng-Tink .
AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2015, 38 (01) :139-149
[8]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[9]  
[Anonymous], 2010, PROC INT C AUTOINTEL
[10]   Fourier-Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals [J].
Bhattacharyya, Abhijit ;
Singh, Lokesh ;
Pachori, Ram Bilas .
DIGITAL SIGNAL PROCESSING, 2018, 78 :185-196